1,996
Views
13
CrossRef citations to date
0
Altmetric
Articles

Transport of natural soil nanoparticles in saturated porous media: effects of pH and ionic strength

, , , , , & show all
Pages 186-196 | Received 01 Sep 2017, Accepted 05 Nov 2017, Published online: 22 Nov 2017

References

  • Liang X, Jin L, Chen Y, et al. Effect of pH on the release of soil colloidal phosphorus. J Soils Sediments. 2010;10(8):1548–1556.10.1007/s11368-010-0275-6
  • Barton CD, Karathanasis AD. Influence of soil colloids on the migration of atrazine and zinc through large soil monoliths. Water Air Soil Pollut. 2003;143(1/4):3–21.10.1023/A:1022886225564
  • Klaine SJ, Alvarez PJJ, Batley GE, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27(9):1825–1851.10.1897/08-090.1
  • Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007;150(1):5–22.10.1016/j.envpol.2007.06.006
  • Bradford SA, Bettahar M. Concentration dependent transport of colloids in saturated porous media. J Contam Hydrol. 2006;82(1–2):99–117.10.1016/j.jconhyd.2005.09.006
  • Sen TK, Khilar KC. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv Colloid Interface Sci. 2006;119(2–3):71–96.
  • Patil S, Tawfiq K, Chen G. Colloid release and transport in agricultural soil as impacted by solution chemistry. J Urban Environ Eng. 2011;5(2):84–90.10.4090/juee
  • Zhang W, Tang XY, Weisbrod N, et al. A coupled field study of subsurface fracture flow and colloid transport. J Hydrol. 2015;524:476–488.10.1016/j.jhydrol.2015.03.001
  • Bradford SA, Kim HN, Haznedaroglu BZ, et al. Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media. Environ Sci Technol. 2009;43(18):6996–7002.10.1021/es900840d
  • Zhang W, Niu JZ, Morales VL, et al. Transport and retention of biochar particles in porous media: effect of pH, ionic strength, and particle size. Ecohydrology. 2010;3(4):497–508.10.1002/eco.v3:4
  • Liu Q, Lazouskaya V, He Q, et al. Effect of particle shape on colloid retention and release in saturated porous media. J Environ Qual. 2010;39(2):500–508.10.2134/jeq2009.0100
  • Kim HJ, Phenrat T, Tilton RD, et al. Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J Colloid Interface Sci. 2012;370(1):1–10.10.1016/j.jcis.2011.12.059
  • Bradford SA, Torkzaban S, Walker SL. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Water Res. 2007;41(13):3012–3024.10.1016/j.watres.2007.03.030
  • Yu C, Muñoz-Carpena R, Gao B, et al. Effects of ionic strength, particle size, flow rate, and vegetation type on colloid transport through a dense vegetation saturated soil system: experiments and modeling. J Hydrol. 2013;499(9):316–323.10.1016/j.jhydrol.2013.07.004
  • Ma J, Guo H, Lei M, et al. Blocking effect of colloids on arsenate adsorption during co-transport through saturated sand columns. Environ Pollut. 2016;213:638–647.10.1016/j.envpol.2016.03.020
  • Zhou D, Wang D, Long C, et al. Transport and re-entrainment of soil colloids in saturated packed column: effects of pH and ionic strength. J Soils Sediments. 2011;11(3):491–503.10.1007/s11368-010-0331-2
  • Li Y, Tan W, Koopal LK, et al. Influence of soil humic and fulvic acid on the activity and stability of lysozyme and urease. Environ Sci Technol. 2013;47(10):5050–5056.10.1021/es3053027
  • Missana T, Benedicto A, Mayordomo N, et al. Analysis of anion adsorption effects on alumina nanoparticles stability. Appl Geochem. 2014;49:68–76.10.1016/j.apgeochem.2014.04.003
  • Zhuang J, Tyner JS, Perfect E. Colloid transport and remobilization in porous media during infiltration and drainage. J Hydrol. 2009;377(1–2):112–119.10.1016/j.jhydrol.2009.08.011
  • Torkzaban S, Bradford SA, Genuchten MTV, et al. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. J Contam Hydrol. 2008;96(1–4):113–127.10.1016/j.jconhyd.2007.10.006
  • Madej E, Klink S, Schuhmann W, et al. Effect of the specific surface area on thermodynamic and kinetic properties of nanoparticle anatase TiO2 in lithium-ion batteries. J Power Sources. 2015;297(1):140–148.10.1016/j.jpowsour.2015.07.079
  • Arab D, Pourafshary P, Ayatollahi S, et al. Remediation of colloid-facilitated contaminant transport in saturated porous media treated by nanoparticles. Int J Environ Sci Technol. 2014;11(1):207–216.10.1007/s13762-013-0311-3
  • Lamy E, Lassabatere L, Bechet B, et al. Effect of a nonwoven geotextile on solute and colloid transport in porous media under both saturated and unsaturated conditions. Geotext Geomembr. 2013;36(36):55–65.10.1016/j.geotexmem.2012.10.009
  • Chowdhury I, Hong Y, Honda RJ, et al. Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate. J Colloid Interface Sci. 2011;360(2):548–555.10.1016/j.jcis.2011.04.111
  • Liu L, Gao B, Wu L, et al. Deposition and transport of graphene oxide in saturated and unsaturated porous media. Chem Eng J. 2013;229(4):444–449.10.1016/j.cej.2013.06.030
  • Chen G, Liu X, Su C. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Langmuir. 2011;27(9):5393–5402.10.1021/la200251v
  • Godinez IG, Darnault CJG. Aggregation and transport of nano-TiO2 in saturated porous media: Effects of pH, surfactants and flow velocity. Water Res. 2011;45(2):839–851.10.1016/j.watres.2010.09.013
  • Kowalkowski T, Tutu H, Cozmuta LM, et al. Assessment of mobility of heavy metals in two soil types by use of column leaching experiments and chemometric evaluation of elution curves. Int J Environ Anal Chem. 2010;90(10):797–811.10.1080/03067310903195003
  • Missong A, Bol R, Willbold S, et al. Phosphorus forms in forest soil colloids as revealed by liquid-state 31P-NMR. J Plant Nutr Soil Sci. 2016;179(2):159–167.10.1002/jpln.201500119
  • Gelman F, Binstock R, Halicz L. Application of the Walkley-Black titration for the organic carbon quantification in organic rich sedimentary rocks. Fuel. 2012;96(1):608–610.10.1016/j.fuel.2011.12.053
  • Mishchuk NA, Dukhin SS. Electrophoresis of solid particles at large Peclet numbers. Electrophoresis. 2002;23(13):2012–2022.10.1002/1522-2683(200207)23:13<2012::AID-ELPS2012>3.0.CO;2-Y
  • Sun H, Gao B, Tian Y, et al. Kaolinite and lead in saturated porous media: facilitated and impeded transport. J Environ Eng. 2010;136(11):1305–1308.10.1061/(ASCE)EE.1943-7870.0000250
  • Yin XQ, Gao B, Ma LQ, et al. Colloid-facilitated Pb transport in two shooting-range soils in Florida. J Hazard Mater. 2010;177(1–3):620–625.10.1016/j.jhazmat.2009.12.077
  • Mier MP, Ibañez R, Ortiz I. Influence of ion concentration on the kinetics of electrodialysis with bipolar membranes. Sep Purif Technol. 2008;59(2):197–205.10.1016/j.seppur.2007.06.015
  • Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci. 1941;43(1–4):30–59.
  • Gregory J. Approximate expressions for retarded van der waals interaction. J Colloid Interface Sci. 1981;83(1):138–145.10.1016/0021-9797(81)90018-7
  • Elimelech M, Jia X, Gregory J, et al. Particle deposition and aggregation. Part Deposition Aggregation. 1998;88(6):xiii–xv.
  • Zhou D, Wang D, Long C, et al. Transport and re-entrainment of soil colloids in saturated packed column: effects of pH and ionic strength. J Soils Sediments. 2011;11(3):491–503.10.1007/s11368-010-0331-2
  • Elimelech M, O’Melia CR. Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. Langmuir. 1990;6(6):1153–1163.10.1021/la00096a023
  • Hogg R, Healy TW, Fuerstenau DW. Mutual coagulation of colloidal dispersions. Trans Faraday Soc. 1966;62:1638–1651.10.1039/tf9666201638
  • Bradford SA, Torkzaban S, Simunek J. Modeling colloid transport and retention in saturated porous media under unfavorable attachment conditions. Water Resour Res. 2011;47(10):599–609.
  • Gurunathan S, Han JW, Eppakayala V, et al. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells. Colloids Surf B. 2013;105(6):58–66.10.1016/j.colsurfb.2012.12.036
  • Feinstein DT, Guo W. STANMOD: a suite of windows-based programs for evaluating solute transport. Ground Water. 2010;42(4):482–487.
  • Jin Z, Lei J, Li S, et al. Metabolic characteristics of microbial communities of Aeolian sandy soils induced by saline water drip irrigation in shelter forests. Eur J Soil Sci. 2015;66(3):476–484.10.1111/ejss.2015.66.issue-3
  • Zhang W, Tang XY, Xian QS, et al. A field study of colloid transport in surface and subsurface flows. J Hydrol. 2016;542:101–114.10.1016/j.jhydrol.2016.08.056
  • Bijarbooneh FH, Zhao Y, Kim JH, et al. Aqueous colloidal stability evaluated by zeta potential measurement and resultant TiO2 for superior photovoltaic performance. J Am Ceram Soc. 2013;96(8):2636–2643.10.1111/jace.2013.96.issue-8
  • Yang F, Niu Q, Lan Q, et al. Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles. J Colloid Interface Sci. 2007;306(2):285–295.10.1016/j.jcis.2006.10.062
  • Xi J, He M, Kong L. Adsorption of antimony on kaolinite as a function of time, pH, HA and competitive anions. Environ Earth Sci. 2016;75(2):1–7.
  • Borgnino L. Experimental determination of the colloidal stability of Fe(III)-montmorillonite: effects of organic matter, ionic strength and pH conditions. Colloids Surf A. 2013;423(423):178–187.10.1016/j.colsurfa.2013.01.065
  • Shang SB, Wang FY, Xu-Qian Li. Study on stability and mobility of soil colloids based on physicochemical property. Soils. 2010;42(6):1015–1019.
  • Hoek EMV, Agarwal GK. Extended DLVO interactions between spherical particles and rough surfaces. J Colloid Interf Sci. 2006;298(1):50–58.10.1016/j.jcis.2005.12.031
  • Feriancikova L, Bardy SL, Wang L, et al. Effects of Outer Membrane Protein TolC on the transport of Escherichia coli within saturated quartz sands. Environ Sci Technol. 2013;47(11):5720–5728.10.1021/es400292x
  • Konan KL, Peyratout C, Smith A, et al. Surface modifications of illite in concentrated lime solutions investigated by pyridine adsorption. J Colloid Interf Sci. 2012;382(1):17–21.10.1016/j.jcis.2012.05.039
  • Chen Y, Liu S, Wang G. A kinetic investigation of cationic starch adsorption and flocculation in kaolin suspension. Chem Eng J. 2007;133(1):325–333.10.1016/j.cej.2007.02.019
  • DiDonato N, Chen H, Waggoner D, et al. Potential origin and formation for molecular components of humic acids in soils. Geochim Cosmochim Acta. 2016;178:210–222.10.1016/j.gca.2016.01.013
  • Xu S, Liao Q, Saiers JE. Straining of nonspherical colloids in saturated porous media. Environ Sci Technol. 2008;42(3):771–778.10.1021/es071328w
  • Tombácz E, Libor Z, Illés E, et al. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Org Geochem. 2004;35(3):257–267.10.1016/j.orggeochem.2003.11.002
  • Zhang L, Luo L, Zhang S. Integrated investigations on the adsorption mechanisms of fulvic and humic acids on three clay minerals. Colloids Surf A. 2012;406(14):84–90.10.1016/j.colsurfa.2012.05.003
  • Ma H, Johnson WP. Colloid retention in porous media of various porosities: predictions by the hemispheres-in-cell model. Langmuir. 2010;26(3):1680.10.1021/la902657v
  • Fang J, Xu MJ, Wang DJ, et al. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH. Water Res. 2013;47(3):1399–1408.10.1016/j.watres.2012.12.005
  • Zevi Y, Dathe A, Gao B, et al. Transport and retention of colloidal particles in partially saturated porous media: Effect of ionic strength. Water Resour Res. 2009;45(12):69–76.
  • Petzold G, Geissler U, Smolka N, et al. Influence of humic acid on the flocculation of clay. Colloid Polym Sci. 2004;282(7):670–676.