902
Views
4
CrossRef citations to date
0
Altmetric
Articles

Is the computed speciation of copper in a wide range of Chinese soils reliable?

, &
Pages 205-215 | Received 30 Jul 2017, Accepted 28 Oct 2017, Published online: 22 Nov 2017

References

  • Nolan AL, McLaughlin MJ, Mason SD. Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using Donnan dialysis. Environ Sci Technol. 2003;37:90–98.10.1021/es025966k
  • Li B, Zhang HT, Ma YB, et al. Relationships between soil properties and toxicity of copper and nickel to bok choy and tomato in Chinese soils. Environ Toxicol Chem. 2013;32:2372–2378.10.1002/etc.v32.10
  • Zhao FJ, Rooney CP, Zhang H, et al. Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants. Environ Toxicol Chem. 2006;25:733–742.10.1897/04-603R.1
  • Lofts S, Criel P, Janssen CR, et al. Modelling the effects of copper on soil organisms and processes using the free ion approach: towards a multi-species toxicity model. Environ Pollut. 2013;178:244–253.10.1016/j.envpol.2013.03.015
  • Unsworth ER, Warnken KW, Zhang H, et al. Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ Sci Technol. 2006;40:1942–1949.10.1021/es051246c
  • Benedetti MF, Van Riemsdijk WH, Koopal LK, et al. Metal ion binding by natural organic matter: from the model to the field. Geochim Cosmochim Acta. 1996;60:2503–2513.10.1016/0016-7037(96)00113-5
  • Weng LP, Temminghoff EJM, Lofts S, et al. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ Sci Technol. 2002;36:4804–4810.10.1021/es0200084
  • Ren ZL, Tella M, Bravin MN, et al. Effect of dissolved organic matter composition on metal speciation in soil solutions. Chem Geol. 2015;398:61–69.10.1016/j.chemgeo.2015.01.020
  • Pourret O, Lange B, Houben D, et al. Modeling of cobalt and copper speciation in metalliferous soils from Katanga (Democratic Republic of Congo). J Geochem Exploit. 2015;149:87–96.10.1016/j.gexplo.2014.11.011
  • Ponthieu M, Pourret O, Marin B, et al. Evaluation of the impact of organic matter composition on metal speciation in calcareous soil solution: comparison of model VI and NICA-Donnan. J Geochem Exploit. 2016;165:1–7.10.1016/j.gexplo.2016.01.017
  • Zhu Y, Guéguen C. Evaluation of free/labile concentrations of trace metals in Athabasca oil sands region streams (Alberta, Canada) using diffusive gradient in thin films and a thermodynamic equilibrium model. Environ Pollut. 2016;219:1140–1147.10.1016/j.envpol.2016.09.018
  • Van Laer L, Smolders E, Degryse F, et al. Speciation of nickel in surface waters measured with the Donnan membrane technique. Anal Chim Acta. 2006;578:195–202.10.1016/j.aca.2006.06.070
  • Nolan AL, Ma YB, Lombi E, et al. speciation and isotopic exchangeability of nickel in soil solution. J Environ Qual. 2009;38:485–492.10.2134/jeq2006.0275
  • Vulkan R, Zhao FJ, Barbosa-Jefferson V, et al. Copper speciation and impacts on bacterial biosensors in the pore water of copper-contaminated soils. Environ Sci Technol. 2000;34:5115–5121.10.1021/es0000910
  • Sauvé S, McBride MB, Hendershot WH. Ion-selective electrode measurements of copper(II) activity in contaminated soils. Arch Environ Contam Toxicol. 1995;29:373–379.10.1007/BF00212503
  • Rachou J, Gagnon C, Sauvé S. Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices. Environ Chem. 2007;4:90–97.10.1071/EN06036
  • Stockdale A, Tipping E, Lofts S. Dissolved trace metal speciation in estuarine and coastal waters: comparison of WHAM/Model VII predictions with analytical results. Environ Toxicol Chem. 2015;34:53–63.10.1002/etc.2789
  • Tipping E. Humic ion binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem. 1998;4:3–47.10.1023/A:1009627214459
  • Lofts S, Tipping E. Assessing WHAM/model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs. Environ Chem. 2011;8:501–516.10.1071/EN11049
  • Milne CJ, Kinniburgh DG, van Riemsdijk WH, et al. Generic NICA−Donnan model parameters for metal-ion binding by humic substances. Environ Sci Technol. 2003;37:958–971.10.1021/es0258879
  • Ahmed IAM, Hamilton-Taylor J, Bieroza M, et al. Improving and testing geochemical speciation predictions of metal ions in natural waters. Water Res. 2014;67:276–291.10.1016/j.watres.2014.09.004
  • Xiong Y, Li QK. The soils of China. 2nd ed. Beijing: Science Press; 1987. Chinese.
  • Gustafsson JP. Visual MINTEQ, ver 2.61. Stockholm: Royal Institute of Technology, Department of Land and Water Resources Engineering; 2009. Available from: http://www.lwr.kth.se/English/OurSoftware/vminteq/
  • Ministry of Environmental Protection of the People’s Republic of China. A national survey of soil pollution bulletin. Beijing; 2014. Chinese.
  • Zarcinas BA, McLaughlin MJ, Smart MK. The effect of acid digestion technique on the performance of nebulization systems used in inductively coupled plasma spectrometry. Commun Soil Sci Plant Anal. 1996;27:1331–1354.10.1080/00103629609369636
  • Li B, Ma YB, McLaughlin MJ, et al. Influences of soil properties and leaching on copper toxicity to barley root elongation. Environ Toxicol Chem. 2010;29:1–8.
  • Thibault DH, Sheppard MI. A disposable system for soil pore-water extraction by centrifugation. Commun Soil Sci Plant Anal. 1992;23:1629–1641.10.1080/00103629209368692
  • Rayment GE, Higginson FR. Ion-exchange properties. In: Rayment GE, Higginson Fr, editors. Australian laboratory handbook of soil and water chemical methods. Melbourne: Inkata; 1992. p. 137–194.
  • Cheng T, Schamphelaere KAC, Lofts S, et al. Measurement and computation of zinc binding to natural dissolved organic matter in European surface waters. Anal Chim Acta. 2005;542:230–239.10.1016/j.aca.2005.03.053
  • Weng LP, Temminghoff EJM, van Riemsdijk WH. Aluminum speciation in natural waters: measurement using Donnan membrane technique and modeling using NICA-Donnan. Water Res. 2002;36:4215–4226.10.1016/S0043-1354(02)00166-5
  • Oorts K, Bronckaers H, Smolders E. discrepancy of the microbial response to elevated copper between freshly spiked and long-term contaminated soils. Environ Toxicol Chem. 2006;25:845–853.10.1897/04-673R.1
  • Sauvé S, Hendershot W, Allen HE. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol. 2000;34:1125–1131.10.1021/es9907764
  • Lofts S, Spurgeon DJ, Svendsen C, et al. Deriving soil critical limits for Cu, Zn, Cd, and Pb: a method based on free ion concentrations. Environ Sci Technol. 2004;38(13):3623–3631.10.1021/es030155 h
  • Sauvé S, McBride MB, Norvell WA, et al. Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Pollut. 1997;100:133–149.10.1023/A:1018312109677
  • Lamb DT, Ming H, Megharaj M, et al. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. J Hazard Mater. 2009;171:1150–1158.10.1016/j.jhazmat.2009.06.124
  • Luo XS, Zhou DM, Liu XH, et al. Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China. J Hazard Mater A. 2006;131:19–27.10.1016/j.jhazmat.2005.09.033
  • Antoniadis V, Golia EE. Sorption of Cu and Zn in low organic matter-soils as influenced by soil properties and by the degree of soil weathering. Chemosphere. 2015;138:364–369.10.1016/j.chemosphere.2015.06.037
  • Ritchie JD, Perdue EM. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim Cosmochim Acta. 2003;67:85–96.10.1016/S0016-7037(02)01044-X
  • Daldoul G, Souissi R, Souissi F, et al. Assessment and mobility of heavy metals in carbonated soils contaminated by old mine tailings in North Tunisia. J Afr Earth Sci. 2015;110(110):150–159.10.1016/j.jafrearsci.2015.06.004
  • Guo XY, Ma YB, Wang XD, et al. Re-evaluating the effects of organic ligands on copper toxicity to barley root elongation in culture solution. Chemical Speciation Bioavailability. 2010;22:51–59.10.3184/095422910X12632121425090
  • Han S, Naito W, Hanai Y, et al. Evaluation of trace metals bioavailability in Japanese river waters using DGT and a chemical equilibrium model. Water Res. 2013;47:4880–4892.10.1016/j.watres.2013.05.025
  • Xu RK, Ji GL. Influence of pH on dissolution of aluminum in acid soils and the distribution of aluminum ion species. Acta Pedologica Sinica. 1998;35:162–171. Chinese.
  • Almås AR, Lombnaes P, Sogn TA, et al. Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Chemosphere. 2006;62:1647–1655.10.1016/j.chemosphere.2005.06.020
  • Amery F, Degryse F, Degeling W, et al. The copper-mobilizing-potential of dissolved organic matter in soils varies 10-Fold depending on soil incubation and extraction procedures. Environ Sci Technol. 2007;41:2277–2281.10.1021/es062166r
  • Djae T, Bravin MN, Garnier C, et al. Parameterizing the binding properties of dissolved organic matter with default values skews the prediction of copper solution speciation and ecotoxicity in soil. Environ Toxicol Chem. 2017;36:898–905.10.1002/etc.v36.4
  • Xu J, Tan W, Xiong J, et al. Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra. J Colloid Interface Sci. 2016;473:141–151.10.1016/j.jcis.2016.03.066
  • Groenenberg JE, Koopmans GF, Comans RNJ. Uncertainty analysis of the nonideal competitive adsorption−donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution. Environ Sci Technol. 2010;44:1340–1346.10.1021/es902615w
  • Kalbitz K, Solinger S, Park JH, et al. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. 2000;165:277–304.10.1097/00010694-200004000-00001
  • Sierra J, Roig N, Giménez Papiol G, et al. Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers. Sci Total Environ. 2017;605–606:211–218.10.1016/j.scitotenv.2017.06.136