260
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Basal ganglia network dynamics and function: Role of direct, indirect and hyper-direct pathways in action selection

, &
Pages 84-121 | Received 10 Sep 2021, Accepted 23 Jan 2023, Published online: 01 Mar 2023

References

  • Abdi A, Mallet N, Mohamed FY, Sharott A, Dodson PD, Nakamura KC, Suri S, Avery SV, Larvin JT, Garas FN. 2015. Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J Neurosci. 35(17):6667–6688. doi:10.1523/JNEUROSCI.4662-14.2015.
  • Albin RL, Young AB, Penney JB. 1989. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12(10):366–375. doi:10.1016/0166-2236(89)90074-X.
  • Alexander GE, Crutcher M. 1990. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13(7):266–271. doi:10.1016/0166-2236(90)90107-L.
  • Alexander GE, Delong M, Strick P. 1986. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 9(1):81–357. doi:10.1146/annurev.ne.09.030186.002041.
  • Baladron J, Nambu A, Hamker FH. 2019. The subthalamic nucleus-external globus pallidus loop biases exploratory decisions towards known alternatives: a neuro-computational study. Eur J Neurosci. 49(6):6. doi:10.1111/ejn.13666.
  • Berthet P, Lindahl M, Tully PJ, Hellgren-Kotaleski J, Lansner A. 2016. Functional relevance of different basal ganglia pathways investigated in a spiking model with reward dependent plasticity. Frontiers in Neural Circuits. 10(53):1–21. doi:10.3389/fncir.2016.00053.
  • Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. 2002. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 25(10):525–531. doi:10.1016/S0166-2236(02)02235-X.
  • Bevan MD, Wilson CJ, Bolam JP, Magill PJ. 2000. Equilibrium potential of GABAA current and implications for rebound burst firing in rat subthalamic neurons in vitro. J Neurophysiol. 83(5):3169–3172. doi:10.1152/jn.2000.83.5.3169.
  • Bischop DP, Orduz D, Lambot L, Schiffmann SN, Gall D. 2012. Control of neuronal excitability by calcium binding proteins: a new mathematical model for striatal fast-spiking interneurons. Front Mol Neurosci. 5(78):1–9. doi:10.3389/fnmol.2012.00078.
  • Bolam JP, Hanley JJ, Booth PA, Bevan MD. 2000. Synaptic organization of the basal ganglia. J Anat. 196(4):4. doi:10.1046/j.1469-7580.2000.19640527.x.
  • Çakir Y. 2017. Modeling influences of dopamine on synchronization behavior of striatum. Network: Computation in Neural Systems. 28(1):28–52. doi:10.1080/0954898X.2017.1378824.
  • Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M. 2016. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci. 17(8):1022–1030. doi:10.1038/nn.3743.
  • Canavier CC, Landry RS. 2006. An increase in ampa and a decrease in sk conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol. 96(5):2549–2563. doi:10.1152/jn.00704.2006.
  • Chakravarthy VS, Joseph D, Bapi RS. 2010. What do the basal ganglia do? a modeling perspective. Biol Cybern. 103(3):237–253. doi:10.1007/s00422-010-0401-y.
  • Chersi F, Mirolli M, Pezzulo G, Baldassarre G. 2013. A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning. Neural Netw. 41:212–224.
  • Chiara B, Mauro U. 2015. A biologically inspired computational model of basal ganglia in action selection. Comput Intell Neurosci. 2015(187417):1–24. doi:10.1155/2015/187417.
  • Chuhma N, Tanaka KF, Hen R, Rayport S. 2011. Functional connectome of the striatal medium spiny neuron. J Neurosci. 31(4):1183–1192. doi:10.1523/JNEUROSCI.3833-10.2011.
  • Connelly WM, Schulz JM, Lees G, Reynolds JN. 2010. Differential short-term plasticity at convergent inhibitory synapses to the substantia nigra pars reticulata. J Neurosci. 30(44):14854–14861. doi:10.1523/JNEUROSCI.3895-10.2010.
  • Cooper AJ, Stanford IM. 2001. Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(a) IPSCs in vitro. Neuropharmacology. 41(1):62–71. doi:10.1016/S0028-3908(01)00038-7.
  • Cruz AV, Mallet N, Magill PJ, Brown P, Averbeck BB. 2011. Effects of dopamine depletion on information flow between the subthalamic nucleus and external globus pallidus. J Neurophysiol. 106(4):2012–2023. doi:10.1152/jn.00094.2011.
  • Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, Costa RM. 2013. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 494(7436):238–242. doi:10.1038/nature11846.
  • Damodaran S, Evans RC, Blackwell KT. 2014. Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. J Neurophysiol. 111(4):836–848. doi:10.1152/jn.00382.2013.
  • Delong MR. 1990. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13(7):281–285. doi:10.1016/0166-2236(90)90110-V.
  • Delong MR, Wichmann T. 2007. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 64(1):20–24. doi:10.1001/archneur.64.1.20.
  • Destexhe A, Mainen ZF, Sejnowski TJ. 1994. An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput. 6(1):14–18. doi:10.1162/neco.1994.6.1.14.
  • Destexhe A, Mainen ZF, Sejnowski TJ. 1998. Kinetic models of synaptic transmission. Vol. Chapter 1, Second ed. Cambridge (MA): MIT Press. p. 1–25
  • Ding L, Gold JI. 2013. The basal ganglia’s contributions to perceptual decision making. Neuron. 79(4):640–649. doi:10.1016/j.neuron.2013.07.042.
  • Dorman DB, Jédrzejewska-Szmek J, Blackwell KT. 2018. Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model. eLife. 7:e38588. doi:10.7554/eLife.38588.
  • Ellender TJ, Huerta-Ocampo I, Deisseroth K, Capogna M, Bolam JP. 2011. Differential modulation of excitatory and inhibitory striatal synaptic transmission by histamine. J Neurosci. 31(43):15340–15351. doi:10.1523/JNEUROSCI.3144-11.2011.
  • Fountas Z, Shanahan M. 2014. International Joint Conference on Neural Networks (IJCNN). NEW YORK: IEEE. Phase offset between slow oscillatory cortical inputs influences competition in a model of the basal ganglia; p. 2407–2414. ISBN: 978-1-4799-1484-5. doi:10.1109/IJCNN.2014.6889687.
  • Fountas Z, Shanahan M. 2017. The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS One. 12(12):12. doi:10.1371/journal.pone.0189109.
  • Frank MJ. 2005. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated parkinsonism. J Cogn Neurosci. 17(1):51–72. doi:10.1162/0898929052880093.
  • Frank MJ. 2006. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Networks. 19(8):1120–1136. doi:10.1016/j.neunet.2006.03.006.
  • Frank MJ, Loughry B, RC Ó. 2001. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cognitive, Affective, & Behavioral Neuroscience. 1(2):137–160. doi:10.3758/CABN.1.2.137.
  • Frank MJ, Seeberger LC, RC Ó. 2004. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science. 306(5703):1940–1943. doi:10.1126/science.1102941.
  • Fujimoto K, Kita H. 1992. Responses of rat substantia nigra pars reticulata units to cortical stimulation. Neurosci Lett. 142(1):105–109. doi:10.1016/0304-3940(92)90630-P.
  • Fujita T, Fukai T, Kitano K. 2012. Influences of membrane properties on phase response curve and synchronization stability in a model globus pallidus neuron. J Comput Neurosci. 32(3):539–553. doi:10.1007/s10827-011-0368-2.
  • Gage GJ, Stoetzner CR, Wiltschko AB, Berke JD. 2010. Selective activation of striatal fast-spiking interneurons during choice execution. Neuron. 67(3):466–479. doi:10.1016/j.neuron.2010.06.034.
  • Gantz SC, Ford CP, Morikawa H, Williams JT. 2018. The evolving understanding of dopamine neurons in the substantia nigra and ventral tegmental area. Annu Rev Physiol. 80(1):219–241. doi:10.1146/annurev-physiol-021317-121615.
  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR. 1991. D1 and d2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 250(4986):1429–1432. doi:10.1126/science.2147780.
  • Gerfen CR, Surmeier DJ. 2011. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 34(1):441–466. doi:10.1146/annurev-neuro-061010-113641.
  • Gittis AH, Berke JD, Bevan M, Chan CS, Mallet N, Morrow MM, Schmidt R. 2014a. New roles for the external globus pallidus in basal ganglia circuits and behavior. J Neurosci. 34(46):15178–15183. doi:10.1523/JNEUROSCI.3252-14.2014.
  • Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC. 2010. Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci. 30(6):2223–2234. doi:10.1523/JNEUROSCI.4870-09.2010.
  • Glajch KE, Kelver DA, Hegeman DJ, Cui Q, Xenias HS, Augustine EC, Hernández VM, Verma N, Huang TY, Luo M, et al. 2016. Npas1+ pallidal neurons target striatal projection neurons. J Neurosci. 36(20):5472–5488. doi:10.1523/JNEUROSCI.1720-15.2016
  • Goldberg JA, Bergman H. 2011. Computational physiology of the neural networks of the primate globus pallidus: function and dysfunction. Neuroscience. 198(15):171–192. doi:10.1016/j.neuroscience.2011.08.068.
  • Götz T, Kraushaar U, Geiger J, Lübke J, Berger T, Jonas P. 1997. Functional properties of AMPAand NMDA receptors expressed in identified types of basal ganglia neurons. J Neurosci. 17(1):204–215. doi:10.1523/JNEUROSCI.17-01-00204.1997.
  • Grace AA, Onn SP. 1989. Morphology and electrophysiological properties of immunocyto-chemically identified rat dopamine neurons recorded in vitro. J Neurosci. 9(10):3463–3481. doi:10.1523/JNEUROSCI.09-10-03463.1989.
  • Grillner S, Robertson B. 2016. The basal ganglia over 500 million years. Curr Biol. 26(20):R1088–R1100. doi:10.1016/j.cub.2016.06.041.
  • Gurney KN, Humphries MD, Redgrave P. 2015. A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol. 13(1):e1002034. doi:10.1371/journal.pbio.1002034.
  • Gurney KN, Humphries M, Wood R, Prescott TJ, Redgrave P. 2009. Testing computational hypotheses of brain systems function: a case study with the basal ganglia. Network. 15(4):263–290. doi:10.1088/0954-898X_15_4_003.
  • Gurney KN, Prescott TJ, Redgrave P. 2001a. A computational model of action selection in the basal ganglia. i. a new functional anatomy. Biol Cybern. 84(6):401–410. doi:10.1007/PL00007984.
  • Gurney KN, Prescott TJ, Redgrave P. 2001b. A computational model of action selection in the basal ganglia. ii. analysis and simulation of behaviour. Biol Cybern. 84(6):411–423. doi:10.1007/PL00007985.
  • Guthrie M, Leblois A, Garenne A, Boraud T. 2013. Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study. J Neurophysiol. 109(12):3025–3040. doi:10.1152/jn.00026.2013.
  • Haber SN. 2003. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 26(4):317–330. doi:10.1016/j.jchemneu.2003.10.003.
  • Haber SN, Fudge JL, Mcfarland NR. 2000. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 20(6):2369–2382. doi:10.1523/JNEUROSCI.20-06-02369.2000.
  • Hahn PJ, McIntyre CC. 2010. Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. J Comput Neurosci. 28(3):425–441. doi:10.1007/s10827-010-0225-8.
  • Hoover JE, Strick PL. 1993. Multiple output channels in the basal ganglia. Science. 259(5096):819–821. doi:10.1126/science.7679223.
  • Humphries MD, Gurney KN. 2002. The role of intra-thalamic and thalamocortical circuits in action selection. Network: Computation in Neural Systems. 13(1):131–156. doi:10.1080/net.13.1.131.156.
  • Humphries MD, Stewart RD, Gurney KN. 2006. A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci. 26(50):12921–12942. doi:10.1523/JNEUROSCI.3486-06.2006.
  • Ibanẽz-Sandoval O, Hernández A, Florán B, Galarraga E, Tapia D, Valdiosera R, Erlij D, Aceves J, Bargas J. 2006. Control of the subthalamic innervation of substantia nigra pars reticulata by d1 and d2 dopamine receptors. J Neurophysiol. 95(3):1800–1811. doi:10.1152/jn.01074.2005.
  • Jaeger D, Kita H. 2011. Functional connectivity and integrative properties of globus pallidus neurons. Neuroscience. 198:44–53. doi:10.1016/j.neuroscience.2011.07.050.
  • Jahr CE, Stevens CF. 1990. Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci. 10(9):3178–3182. doi:10.1523/JNEUROSCI.10-09-03178.1990.
  • Johnson PI, Napier TC. 1997. GABA- and Glutamate-evoked Responses in the Rat Ventral Pallidum are Modulated by Dopamine. Eur J Neurosci. 9(7):7. doi:10.1111/j.1460-9568.1997.tb01494.x.
  • Kéos T, Tepper JM. 1999. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci. 2(5):467–472. doi:10.1038/8138.
  • Kincaid AE, Zheng T, Wilson CJ. 1998. Connectivity and convergence of single corticostriatal axons. J Neurosci. 18(12):4722–4731. doi:10.1523/JNEUROSCI.18-12-04722.1998.
  • Kita H. 1992. Responses of globus pallidus neurons to cortical stimulation: intracellular study in the rat. Brain Res. 589(1):84–90. doi:10.1016/0006-8993(92)91164-A.
  • Kita H, Chiken S, Tachibana Y, Nambu A. 2006. Origins of gaba(a) and gaba(b) receptormediated responses of globus pallidus induced after stimulation of the putamen in the monkey. J Neurosci. 26(24):6554–6562. doi:10.1523/JNEUROSCI.1543-06.2006.
  • Kita H, Kita T. 2011. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. J Neurosci. 31(28):10311–10322. doi:10.1523/JNEUROSCI.0915-11.2011.
  • Kita H, Kitai ST. 1991. Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Res. 564(2):296–305. doi:10.1016/0006-8993(91)91466-E.
  • Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC. 2010. Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry. Nature. 466(7306):622–626. doi:10.1038/nature09159.
  • Kreitzer AC. 2009. Physiology and pharmacology of striatal neurons. Annu Rev Neurosci. 32(1):127–147. doi:10.1146/annurev.neuro.051508.135422.
  • Krishnan R, Ratnadurai S, Subramanian D, Chakravarthy VS, Rengaswamy M. 2011. Modeling the role of basal ganglia in saccade generation: is the indirect pathway the explorer? Neural Networks. 24(8):801–813. doi:10.1016/j.neunet.2011.06.002.
  • Kumaravelu K, Brocker DT, Grill WM. 2016. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-ohda lesioned rat model of Parkinson’s disease. J Comput Neurosci. 40(2):207–229. doi:10.1007/s10827-016-0593-9.
  • Lanciego JL, Gonzalo N, Castle M, Sanchez-Escobar C, Aymerich MS, Obeso JA. 2004. Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus. Eur J Neurosci. 19(5):1267–1277. doi:10.1111/j.1460-9568.2004.03244.x.
  • Lanciego JL, Luquin N, Obeso JA. 2012. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med. 2(12):1–21. doi:10.1101/cshperspect.a009621.
  • Lévesque M, Parent A. 2005. The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci USA. 102(33):11888–11893. doi:10.1073/pnas.0502710102.
  • Levy R, Friedman HR, Davachi L, Goldman-Rakic PS. 1997. Differential activation of the caudate nucleus in primates performing spatial and nonspatial working memory tasks. J Neurosci. 17(10):3870–3882. doi:10.1523/JNEUROSCI.17-10-03870.1997.
  • Lindahl M, Hellgren Kotaleski J. 2016. Untangling Basal Ganglia Network Dynamics and Function: role of Dopamine Depletion and Inhibition Investigated in a Spiking Network Model. eNeuro. 3(6):ENEURO.0156–16.2016. doi:10.1523/ENEURO.0156-16.2016.
  • Lindahl M, Kamali Sarvestani I, Ekeberg O, Kotaleski JH. 2013. Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways. Front Comput Neurosci. 7(76):1–19. doi:10.3389/fncom.2013.00076.
  • Lindskog M, Kim M, Wikstr¨om MA, Blackwell KT, Kotaleski JH. 2006. Transient calcium and dopamine increase pka activity and darpp-32 phosphorylation. PLoS Computational Biology. 2(9):1045–1060. doi:10.1371/journal.pcbi.0020119.
  • Liss B, Roeper J. 2008. Individual dopamine midbrain neurons: functional diversity and flexibility in health and disease. Brain Res Rev. 58(2):314–321. doi:10.1016/j.brainresrev.2007.10.004.
  • Lo CC, Wang XJ. 2006. Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat Neurosci. 9(7):956–963. doi:10.1038/nn1722.
  • Magdoom KN, Subramanian D, Chakravarthy VS, Ravindran B, Amari SI, Meenakshisun-daram N. 2011. Modeling basal ganglia for understanding parkinsonian reaching movements. Neural Comput. 23(2):477–516. doi:10.1162/NECO_a_00073.
  • Mallet N, Delgado L, Chazalon M, Miguelez C, Baufreton J. 2019. Cellular and synaptic dysfunctions in Parkinson’s disease: stepping out of the striatum. Cells. 8(9):1005–1034. doi:10.3390/cells8091005.
  • Mallet N, Micklem BR, Henny P, Brown MT, Magill PJ. 2012. Dichotomous organization of the external globus pallidus. Neuron. 74(6):1075–1086. doi:10.1016/j.neuron.2012.04.027.
  • Mallet N, Schmidt R, Leventhal D, Chen F, Berke J. 2016. Arkypallidal cells send a stop signal to striatum. Neuron. 89(2):308–316. doi:10.1016/j.neuron.2015.12.017.
  • Marsden CD, Obeso JA. 1994. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain. 117(4):877–897. doi:10.1093/brain/117.4.877.
  • Middleton FA, Strick PL. 2000. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev. 31(2–3):236–250. doi:10.1016/S0165-0173(99)00040-5.
  • Mink JW. 1996. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 50(4):381–425. doi:10.1016/s0301-0082(96)00042-1.
  • Moubarak E, Engel D, Dufour MA, Tapia M, Tell F, Goaillard JM. 2019. Robustness to axon initial segment variation is explained by somatodendritic excitability in rat substantia nigra dopaminergic neurons. The Journal of Neuroscience. 39(26):5044–5063. doi:10.1523/JNEUROSCI.2781-18.2019.
  • Moyer JT, Danish SF, Finkel LH. 2011. Deep brain stimulation: anatomical physiological and computational mechanisms. Network: Computation in Neural Systems. 22(1–4):186–207. doi:10.3109/0954898X.2011.638356.
  • Moyer JT, Wolf JA, Finkel LH. 2007. Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J Neurophysiol. 98(6):3731–3748. doi:10.1152/jn.00335.2007.
  • Nambu A. 2015. Functional circuitry of the basal ganglia. Switzerland (CH): Springer, Cham; p. 1–11. chap. 1
  • Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, Akazawa T, Ikeuchi Y, Hasegawa N. 2003. Excitatory cortical inputs to pallidal neurons through the cortico-subthalamo-pallidal hyperdirect pathway in the monkey. vol. 54. New York (NY):Springer, Boston, MA. Vol. Chapter 22 p.217–223.
  • Nambu A, Tokuno H, Takada M. 2002. Functional significance of the cortico-subthalamo-pallidal ’hyperdirect’ pathway. Neurosci Res. 43(2):111–117. doi:10.1016/S0168-0102(02)00027-5.
  • Nicola SM, Surmeier J, Malenka RC. 2000. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. 23(1):185–215. doi:10.1146/annurev.neuro.23.1.185.
  • Oorschot DE. 1996. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comparative Neurol. 366(4):580–599. doi:10.1002/(SICI)1096-9861(19960318)366:4<580::AID-CNE3>3.0.CO;2-0.
  • Parent A, Hazrati LN. 1995. Functional anatomy of the basal ganglia. i. the cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev. 20(1):91–127. doi:10.1016/0165-0173(94)00007-C.
  • Parthasarathy HB, Graybiel AM. 1997. Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the squirrel monkey. J Neurosci. 17(7):2477–2491. doi:10.1523/JNEUROSCI.17-07-02477.1997.
  • Percheron G, Fran¸cois C, Yelnik J, Fénelon G, Talbi B. 1994. The basal ganglia related system of primates: definition, description and informational analysis. vol. 41. New York (NY):Springer, Boston, MA. Vol. chap. 1 p.3–20.
  • Planert H, Szydlowski SN, Hjorth JJ, Grillner S, Silberberg G. 2010. Dynamics of synaptic transmission between fast-spiking interneurons and striatal projection neurons of the direct and indirect pathways. J Neurosci. 30(9):3499–3507. doi:10.1523/JNEUROSCI.5139-09.2010.
  • Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y, Markram H, Destexhe A. 2008. Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biol Cybern. 99(4–5):427–441. doi:10.1007/s00422-008-0263-8.
  • Redgrave P, Prescott TJ, Gurney KN. 1999. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience. 89(4):1009–1023. doi:10.1016/S0306-4522(98)00319-4.
  • Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Agid Y, Delong MR, Obeso JA. 2010. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci. 11(11):760–772. doi:10.1038/nrn2915.
  • Rubchinsky LL, Kopell N, Sigvardt KA. 2003. Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits. Proc Natl Acad Sci USA. 100(24):14427–14432. doi:10.1073/pnas.2036283100.
  • Rubin JE, Terman D. 2004. High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci. 16(3):211–235. doi:10.1023/B:JCNS.0000025686.47117.67.
  • Samuelsson E, Kotaleski JH. 2007. Exploring GABAergic and dopaminergic effects in a minimal model of a medium spiny projection neuron. Neurocomputing. 70(10–12):1615–1618. doi:10.1016/j.neucom.2006.10.045.
  • Sato F, Lavalle P, Lvesque M, Parent A. 2000a. Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol. 417(1):17–31. doi:10.1002/(SICI)1096-9861(20000131)417:1<17::AID-CNE2>3.0.CO;2-I.
  • Sato F, Parent M, Lévesque M, Parent A. 2000b. Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol. 424(1):142–152. doi:10.1002/1096-9861(20000814)424:1<142::AID-CNE10>3.0.CO;2-8.
  • Saunders A, Huang KW, Sabatini BL, Finkelstein DI. 2016. Globus pallidus externus neurons expressing parvalbumin interconnect the subthalamic nucleus and striatal interneurons. Plos One. 11(2):e0149798. doi:10.1371/journal.pone.0149798.
  • Schroll H, Vitay J, Hamker FH. 2012. Working memory and response selection: a computational account of interactions among cortico-basalganglio-thalamic loops. Neural Networks. 26(none):59–74. doi:10.1016/j.neunet.2011.10.008.
  • Şengör NS, Karabacak SU. 2008. A computational model of cortico-striato-thalamic circuits in goal-directed behaviour. Berlin (Heidelberg): Springer-Verlag; p. 328–337.
  • Shen W, Flajolet M, Greengard P, Surmeier DJ. 2008. Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 321(5890):848–851. doi:10.1126/science.1160575.
  • Shepherd GM. 2013. Corticostriatal connectivity and its role in disease. Nat Rev Neurosci. 14(4):278–291. doi:10.1038/nrn3469.
  • Smith Y, Bevan MD, Shink E, Bolam JP. 1998. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience. 86(2):353–387. doi:10.1016/s0306-4522(98)00004-9.
  • So RQ, Kent AR, Grill WM. 2012. Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. J Comput Neurosci. 32(3):499–519. doi:10.1007/s10827-011-0366-4.
  • Spruston N, Jonas P, Sakmann B. 1995. Dendritic glutamate receptor channels in rat hippocampal ca3 and ca1 pyramidal neurons. J Physiol. 482(Pt 2):325–352. doi:10.1113/jphysiol.1995.sp020521.
  • Stephenson-Jones M, Samuelsson E, Ericsson J, Robertson B, Grillner S. 2011. Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr Biol. 21(13):1081–1091. doi:10.1016/j.cub.2011.05.001.
  • Stocco A, Lebiere C, Anderson JR. 2010. Conditional routing of information to the cortex: a model of the basal ganglia’s role in cognitive coordination. Psychol Rev. 117(2):541–574. doi:10.1037/a0019077.
  • Straub C, Saulnier JL, Bégue A, Feng DD, Huang KW, Sabatini BL. 2016. Principles of synaptic organization of GABAergic interneurons in the striatum. Neuron. 92(1):84–92. doi:10.1016/j.neuron.2016.09.007.
  • Suri RE, Bargas J, Arbib MA. 2001. Modeling functions of striatal dopamine modulation in learning and planning. Neuroscience. 103(1):65–85. doi:10.1016/S0306-4522(00)00554-6.
  • Surmeier DJ, Ding J, Day M, Wang Z, Shen W. 2007. D1 and d2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30(5):228–235. doi:10.1016/j.tins.2007.03.008.
  • Suryanarayana SM, Hellgren Kotaleski J, Grillner S, Gurney KN. 2019. Roles for globus pallidus externa revealed in a computational model of action selection in the basal ganglia. Neural Networks. 109:113–136. doi:10.1016/j.neunet.2018.10.003.
  • Su F, Wang J, Niu S, Li H, Deng B, Liu C, Wei X. 2018. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia–thalamic network. Neural Networks. 98:283–295. doi:10.1016/j.neunet.2017.12.001.
  • Tomkins A, Vasilaki E, Beste C, Gurney K, Humphries MD. 2013. Transient and steady-state selection in the striatal microcircuit. Front Comput Neurosci. 7(192):1–16. doi:10.3389/fncom.2013.00001.
  • Utter AA, Basso MA. 2008. The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev. 32(3):333–342. doi:10.1016/j.neubiorev.2006.11.003.
  • Wang XJ, Rinzel J. 1992. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 4(1):84–97. doi:10.1162/neco.1992.4.1.84.
  • Wei W, Rubin JE, Wang XJ. 2015. Role of the indirect pathway of the basal ganglia in perceptual decision making. J Neurosci. 35(9):4052–4064. doi:10.1523/JNEUROSCI.3611-14.2015.
  • Wei W, Wang XJ. 2016. Inhibitory control in the cortico-basal ganglia-thalamocortical loop: Complex regulation and interplay with memory and decision processes. Neuron. 92(5):1093–1105. doi:10.1016/j.neuron.2016.10.031.
  • Wickens J. 1997. Basal ganglia: structure and computations. Network. 8(4):R77–R109. doi:10.1088/0954-898X_8_4_001.
  • Wilson CJ, Callaway JC. 2000. Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol. 83(5):3084–3100. doi:10.1152/jn.2000.83.5.3084.
  • Wilson CJ, Weyrick A, Terman D, Hallworth NE, Bevan MD. 2004. A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons. J Neurophysiol. 91(5):1963–1980. doi:10.1152/jn.00924.2003.
  • Wolf-Julian N, Henning S, Luisa DAMA, Andreas H, Siobhan E, Friederike I, Patricia K, Gerd-Helge S, Fred H, Kuhn AA. 2018. Functional segregation of basal ganglia pathways in Parkinson’s disease. Brain. 141(9):2655–2669. doi:10.1093/brain/awy206.
  • Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Finkel LH. 2005. NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci. 25(40):9080–9095. doi:10.1523/JNEUROSCI.2220-05.2005.
  • Zador A, Koch C. 1994. Linearized models of calcium dynamics: formal equivalence to the cable equation. J Neurosci. 14(8):4705–4715. doi:10.1523/JNEUROSCI.14-08-04705.1994.
  • Zhang XH, Liu SQ, Zhan FB, Wang J, Jiang XF. 2017. The effects of medium spiny neuron morphological changes on basal ganglia network under external electric field: a computational modeling study. Front Comput Neurosci. 11:91. doi:10.3389/fncom.2017.00091.
  • Zhang S, Trussell LO. 1994. Voltage clamp analysis of excitatory synaptic transmission in the avian nucleus magnocellularis. J Physiol. 480(1):123–136. doi:10.1113/jphysiol.1994.sp020346.
  • Zhou FM, Lee CR. 2011. Intrinsic and integrative properties of substantia nigra pars reticulata neurons. Neuroscience. 198(198):69–94. doi:10.1016/j.neuroscience.2011.07.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.