141
Views
42
CrossRef citations to date
0
Altmetric
Article

Role of p53 mutations, protein function and DNA damage for the radiosensitivity of human tumour cells

, , , &
Pages 53-63 | Received 11 Jun 2003, Accepted 10 Oct 2003, Published online: 03 Jul 2009

References

  • AKYUZ, N., BOEFIDEN, G. S., SUSSE, S., RIMER, A., PREUSS, U., SCHEIDTMANN, K. H. and WIESMULLER, L., 2002, DNA substrate dependence of p53-mediated regulation of double-strand break repair. Molecular and Cellular Biology, 22, 6306–6317.
  • ALSNER, J., SORENSEN, S. B. and OVERGAARD, J., 2001, TP 53 mutation is related to poor prognosis after radiotherapy, but not surgery, in squamous cell carcinoma of the head and neck. Radiotherapy and Oncology, 59, 179–185.
  • BAKALKIN, G., YAKOVLEVA, T., SELIVANOVA, G., MAGNUSSON, K. P., SZEKELY, L., KISELEVA, E., KLEIN, G., TERENIUS, L. and WIMAN, K. G., 1994, p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proceedings of the National Academy of Sciences, USA, 91, 413–417.
  • BATES, S. and VOUSDEN, K. H., 1999, Mechanism of p53-mediated apoptosis. Cellular and Molecular Life Science, 55, 28–37.
  • BERNS, E. M.", FOEKENS," A., VOSSEN, R., LOOK, M. P., DEVILEE, P., HENZEN-LOGMANS, S. C., VAN STAVEREN, I. L., VAN PUTTEN, W. L. J., INGANaS, M., MEIJER-VAN GELDER, M. E., CoENEussE, C., CLAADSEN, C. J. C., PORTENGEN, H., BAKKER, B. and KujN, J. G. M., 2000, Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Research, 60, 2155–2162.
  • BINDER, A., THERON, T., DONNINGER, H., PARKER, M. and Boum, L., 2000, Radiosensitization and DNA repair inhibition by pentoxifyllin in NIH3T3 p53 transfectants. International Journal of Radiation Biology, 789, 991–1000.
  • BIUSTOW, R. G., BENCHIMOL, S. and HILL, R. P., 1996, The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiotherapy and Oncology, 40, 197–223. BRISTOW, R. G., Hu, Q, JANG, A., CHUNG, S., PEACOCK, J.,
  • BENCHIMOL, S. and HILL, R., 1998, Radioresistant MTp53-expressing rat embryo cell transformants exhibit increased DNA-dsb rejoining during exposure to ionizing radiation. Oncogene, 1998, 1789–1802.
  • BROWN, J. M. and WOUTERS, B. G., 1999, Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Research, 59, 1391–1399.
  • BUNZ, F., DUTRIAUX, A., LENGAUER, C., WALDMAN, T., ZHOU, S., BROWN, J. P., SEDIVY, J. M., KINZLER, K. W. and VOGELSTEIN, B., 1998, Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 282, 1497–1501.
  • CHANG, E. H., PIROLLO, K. F., Zuou, Z. Q, CHEUNG, H. Y., LAWLER, E. L., GARNER, R., WHITE, E., BERSTEIN, W. B., FRAUMENI, J. W. and BLATTNER, W. A., 1987, Oncogenes in radioresistant, noncancerous skin fibroblasts from a cancer-prone family. Science, 237, 1036–1039.
  • CHEN, J.-Y., Fu, W. D., WEIGHT, W. E., SHAY, J. W. and MINNA, J. D., 1993, Heterogeneity of transcriptional activity of mutant p53 proteins and p53 target sequences. Oncogene, 8, 2159–2166.
  • CHRESTA, C. M., MASTERS, J. R. W. and HICKMAN, J. A., 1996, Hypersensitivity of human testicular tumors to etoposid-induced apoptosis is associated with functional p.53 and a high Bax:Bc1-2 ratio. Cancer Research, 56, 1834–1841.
  • CLARKE, A. R., PURDIE, C. A., HARRISON, D. J., Moluus, R. G., BIRD, C. C., HOOPER, M. L. and WYLLIE, A. H., 1993, Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature, 362, 849–852.
  • COLLETIER, P. J., ASHOORI, F., COWEN, D., MEyN, R. E., TOFILON, P., MEISTIUCH, M. E. and POLLACK, A., 2000, Adenoviral-mediated p53 transgene expression sensitizes both wild-type and null p53 prostate cancer cells in vitro to radiation. International Journal of Radiation Oncology Biology and Physics, 48, 1507–1512.
  • DAHMDAPHI, J., 2000, P53, biology and role for cellular racliosensitivity. Strahlentherapie und Onkologie, 176, 278–285.
  • DIBIASE, S. J., GUAN, J., CURRAN, W. and Iumus, G., 1999, Repair of DNA double-strand breaks and racliosensitivity to killing in an isogenic group of p.53 mutant cell lines. International Journal of Radiation Oncology, 45, 743–751.
  • EL-AWAY, R. A., DIKOMEY, E. and DABAA-DAPru, J., 2003, Radiosensitivity of human tumour cells is associated with the induction but not with the repair of DNA double-strand breaks. British Journal of Cancer, 89, 593–601.
  • EL-DFIRY, W. S., HARPER, J. W., O'CONNOR, P. M., VELCULESCU, V. E., CANMAN, C. E., T JACKMAN, J., PIETENPOL, J. A., BURRELL, M., Hru„, D. E., WANG, Y., WIIVIAN, K. G., MERCER, W. E., KASTAN, M. B., KOHN, K. W., EITYDGE, S. J., KE\TzLER, K. W. and VOGELSTEIN, B., 1994, WAF1/ CIP1 is induced in p53-mediated Gl-arrest and apoptosis. Cancer Research, 54, 1169–1174.
  • FALETTE, N., PAPERIN, M.-P., TRETTLFUX, I., GRATADOUR, A.-C., PELOUX, N., MIGNOTTE, H., TOOKE, N., LOFMAN, E., INGANAS, M., BREMOND, A., OZTURK, M. and PUISIEUX, A., 1998, Prognostic value of P53 gene mutations in a large series of node-negative breast cancer patients. Cancer Research, 58, 1451–1455.
  • GALLO, 0., CHIARELLI, I., BIANCHI, S., CALZOLARI, A., SIMONETTI, L. and PORFIRIO, B., 1996, Loss of p53 gene mutation after irradiation is associated with increased aggressiveness in recurring head and neck cancer. Clinical Cancer Research, 2, 1577–1582.
  • GEBOW, D., MISELIS, N. and LIBER, H. L., 2000, Homologous and non-homologous recombination resulting in deletion: effect of p53, microhomology, and repetitive DNA length and orientation. Molecular and Cellular Biology, 20, 4028–4035.
  • GENG, L., WALTER, S., MELIAN, E. and VAUGHAN, A. T. M., 1998, Transfection of a vector expressing wild-type p53 into cells of two human glioma cell lines enhances radiation toxicity. Radiation Research, 150, 31–37.
  • GIACCIA, A. J. and KASTAN, M. B., 1998, The complexity of p53 modulation: emerging pattern from divergent signals. Genes and Development, 12, 2973–2983.
  • GUILLOUF, C., ROSSELLI, F., KRISHNARAJU, K., MOUSTACCIII, E., HOFFMAN, B. and LIEBERMANN, D. A., 1995, P53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene, 10, 2263–2270.
  • HONDA, K., SmsA, E., Tulip, A., PAPEO, P. A., SACCONE, C., POOLE, S., PIGNATELLI, M., MTTRY, R. R., DING, S., IsLA, A., DAVIES, A. and HABIB, N. A., 1998, p53 mutation is a poor prognostic indicator for survival in patients with hepatocellular carcinoma undergoing surgical tumour ablation. British Journal of Cancer, 77, 776–782.
  • KOCH, W. M., BRENNAN, J. A., ZAHURAK, M., GOODMAN, S. N., WESTRA, W. H., SCHWAB, D., Yoo, G. H., LEE, D. J., FORASTIERE, A. A. and SIDRANSKY, D., 1996, p53 mutations and locoregional treatment failure in head and neck squamous cell carcinoma. Journal of the National Cancer Institute, 88, 1580–1586.
  • KOKONTIS, J. M., WAGNER, A. J., O'LEARY, M., LIAO, S. and HAY, N., 2001, A transcriptional activation function of p53 is dispensable for and inhibitory of its apoptotic function. Oncogene, 20, 659–668.
  • KOMAROVA, E. A., CHEUSTOV, K., FAERMAN, A. I. and Guuxov, A. V., 2000, Different impact of p53 and p21 on the radiation response of mouse tissues. Oncogene, 19, 3791–3798.
  • KUERBITZ, S. J., PLUNKETT, B. S., WALSH, W. V. and KASTAN, M. B., 1992, Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proceedings of the National Academy of Sciences, USA, 89, 7491–7495.
  • LAKIN, N. D. and JACKSON, S. P., 1999, Regulation of p53 in response to DNA damage. Oncogene, 18, 7644–4655.
  • LAx, S. A., Gifu, M. C., BUSSON, P., KrAmuT, H. J. and Liu, F. F., 2001, Adenovirus-p53 gene therapy in human nasopharyngeal carcinoma xenografts. Radiotherapy and Oncology, 61, 309–312.
  • LEE, J. M. and BERNSTEIN, A., 1993, p53 mutations increase resistance to ionizing radiation. Proceedings of the National Academy of Sciences, USA, 90, 5742–5746.
  • Li, C.-Y., NAGASAWA, H., DAHLBERG, W. K. and LITTLE, J. B., 1995, Diminished capacity for p53 in mediating a radiation-induced G1 arrest in established human tumor cell lines. Oncogene, 11, 1885–1892.
  • LIME, S. P., CLARKIN, K. C. and WAHL, G. M., 1997, P53 mediates permanent arrest over multiple cell cycles in response to gamma-irradiation. Cancer Research, 57, 1171–1179.
  • MA, L., RONA', A., RIEDE, U. N. and KOHLER, G., 1998, Clinical implication of screening p53 gene mutations in head and neck sqamous cell carcinomas. Journal of Cancer Research and Clinical Oncology, 124, 389–396.
  • MACCALLUM, P. E., HUPP, T. R., MIDGLEY, C. A., STUART, D., CAMPBELL, S. J., HARPER, A., WALSH, F. S., WRIGHT, E. G., BALmAIN, A., LANE, D. P. and HALL, P. A., 1996, The p53 response to ionizing radiation in adult and developing murine tissues. Oncogene, 13, 2757–2587.
  • MAY, P. and MAY, E., 1999, Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene, 18, 7621–7636.
  • MINETA, H., BORG, A., DICTOR, M., WAHLBERG, P., AKERVALL, J. and WENNERBERG, J., 1998, P53 mutation, but not p53 overexpression, correlates with survival in head and neck squamous cell carcinoma. British Journal of Cancer, 78, 1084–1090.
  • MULLER, B. F., PAULSEN, D. and DEPPERT, W., 1996, Specific binding of MAR/SAR DNA-elements by mutant p53. Oncogene, 12, 1941–1852.
  • MUMMENBRAUER, T., JAxus, F., MULLER, B., WIESMULLER, L., DEPPERT, W. and GROSSE, F., 1996, p53 protein exhibits 3'- to 5'-exonuclease activity. Cell, 85, 1089–1099.
  • NELSON, W. G. and KASTAN, M. B., 1994, DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Molecular and Cellular Biology, 14, 1815–1823.
  • O'CONNOR, P. M., JACKMAN, J., BAE, I., MYERS, T. G., FAN, S., MUTOH, M., SCUDIERO, D. A., MONKS, A., SAUSVILLE, E. A., WEINSTEIN, J. N., FRIEND, S., FORNACE, A. J., JR, and KOHN, K. W., 1997, Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitor potency of 123 anticancer agents. Cancer Research, 57, 4285–4300.
  • PARDO, F. S., Su, M., BOREK, C., PREFER, F., DOMBKOWSKI, D., GERWECK, L. and SCHMIDT, E. V., 1994, Transfection of rat embryo cells with mutant p53 increases the intrinsic radiation resistance. Radiation Research, 140, 180–185.
  • PASSALARIS, T. M., BENANTI, J. A., GEWIN, L., KYONO, T. and GALLOWAY, D. A., 1999, The G2 Checkpoint is maintained by redundant pathways. Molecular and Cellular Biology, 19, 5872–5881.
  • PIROLLO, K. F., HAO, Z., RAIT, A., JANG, Y. J., FEE, W. E., RYAN, P., CHIANG, Y. and CHANG, E. H., 1997, p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene, 14, 1735–1746.
  • POCARD, M., CHEVILLARD, S., VILLAUCY, J., POUPON, M. F., DununAux, B. and REMVIKOS, Y., 1996, Different p53 mutations produce distinct effects on the ability of colon carcinoma cells to become blocked at the Gl/S boundary after irradiation. Oncogene, 12, 875–882.
  • POLLACK, I. F., HAMILTON, R. L., FINKELSTEIN, S. D., CAMPBELT J. W., MARTINEZ, A. J., SHERWIN, R. N., Bozix, M. E. and GOLLIN, S. M., 1997, The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Research, 57, 304–309.
  • POWFLT, S. N., DEFRANK, J. S., CONNELL, P., EOGAN, M., PREFFER, F., DOMBKOWSKI, D., TANG, W. and FRIEND, S., 1995, Differential sensitivity of p.53 (minus) and p53 (plus) cells to caffeine-induced racliosensitization and override of G2 delay. Cancer Research, 55, 1643–1648.
  • Rum, C. P. and MILNER, J., 2003, p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO Journal, 22, 975–986.
  • SAINTIGNY, Y., RournAED, D., CHAEur, B., Soussi, T. and LOPEZ, B. S., 1999, Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint. Oncogene, 18, 3553–3363.
  • SAUNDERS, M. E., MACKENZIE, R., SHIPMAN, R., FRANSEN, E., GILBERT, R. and JoRDAN, R. C. K., 1999, Patterns of p53 gene mutations in head and neck cancer. Full length gene sequencing and results of primary radiotherapy. Clinical Cancer Research, 5, 2455–2463.
  • SCHEFFNER, M., WERNESS, B. A., HUIBREGTSE, J. M., LEVINE, A. J. and HOWLEY, P. M., 1990, The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell, 63, 1129–1136.
  • SILES, E., VrnArosos, M., VALENZUELA, M. T., NONEz, M. I., GORDON, A., McMrnAN, T. J., PEDRAZA, V. and RUIR DE ALMODOVAR, J. M., 1996, Relationship between p.53 status and racliosensitivity in human tumour cell lines. British Journal of Cancer, 73, 581–588.
  • SLICHENMYER, W. J., NELSON, W. G., SLEBOS, R. J. and KASTAN, M. B., 1993, Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Research, 53, 4164–4168.
  • SOMASUNDARAM, K., ZHANG, H., ZENG, Y.-X., HOUVRAS, Y., PENG, Y., ZHANG, H., Wu, G. S., Limn," D., WEBER, B. L. and EL-DEWY, W. S., 1997, Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21 (VVAF1/DiPI). Nature, 389, 187–190.
  • SPITZ, F. R., NGUYEN, D., SKIBBER, J. M., CRISTIANO, R. J. and ROTH, J. A., 1996, Adenoviral-mecliated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clinical Cancer Research, 2, 1665–1671.
  • STEWARD, N., HICKS, G. G., PARASKEVAS, F. and MOWAT, M., 1995, Evidence for a second cell cycle block at G2/M by p53. Oncogene, 10, 109–115.
  • Su, L. N. and LITTLE, J. B., 1993, Prolonged cell cycle delay in raclioresistant human cell lines transfected with activated ras oncogene and/or simian virus 40 T-antigen. Radiation Research, 133, 73–79.
  • SYLJUASEN, R. G., KROLEWSKI, B. and LrrnE, J. B., 1999, Loss of normal G1 checkpoint control is an early step in carcinogenesis independent of p.53 status. Cancer Research, 59, 1008–1014.
  • TAYLOR, W. R., AGARWAL, M. L., AGARWAL, A., STACEY, D. W. and STARK, G. R., 1999, p53 inhibits entry into mitosis when DNA synthesis is blocked. Oncogene, 18, 283–295.
  • TAYLOR, W. R. and STARK, G. R., 2001, Regulation of the G2/M transition by p53. Oncogene, 20, 1803–1815.
  • TSANG, N.-M., NAGASAWA, H., Li, C. and LniTE, J. B., 1995, Abrogation of p53 function by transfection of HPV16E6 gene enhances the resistance of human diploid fibroblasts to ionizing radiation. Oncogene, 10, 2403–2408.
  • WALDMAN, T., KINZLER, K. W. and VOGELSTEIN, B., 1995, p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Research, 55, 5187–5190.
  • WARENIUS, H. M., JONES, M., GORMAN, T., McLosii, R., SEABRA, L., BARACLOUGH, R. and RUDLAND, P., 2000, Combined RAF1 protein expression and p.53 mutational status provides a strong predictor of cellular racliosensitivity. British Journal of Cancer, 83, 1084–1095.
  • YANG, A. and McKEoN, F., 2000, P63 and p73: p53 mimics, menaces and more. Nature Reviews, 1, 199–207.
  • ZAFFARONI, N., BENIN', E., GORNATI, D., BEARZATTO, A. and SILVESTINI, R., 1995, Lack of a correlation between p53 protein expression and radiation response in human tumor primary cultures. Stem Cells, 13, 77–85.
  • ZOLZER, F., HILLEBRANDT, S. and STREFFER, C., 1995, Radiation induced Gl-block and p.53 status in six human cell lines. Radiotherapy and Oncology, 37, 20–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.