699
Views
44
CrossRef citations to date
0
Altmetric
Original Article

Microscopic imaging of DNA repair foci in irradiated normal tissues

, & , MD, PhD, FRCPC
Pages 732-746 | Received 01 Oct 2008, Accepted 27 Jan 2009, Published online: 22 Sep 2009

References

  • Ahmed E A, Van Der Vaart A, Barten A, Kal H B, Chen J, Lou Z, Minter-Dykhouse K, Bartkova J, Bartek J, De Boer P, DE Rooij D G. Differences in DNA double strand breaks repair in male germ cell types: Lessons learned from a differential expression of Mdc1 and 53BP1. DNA Repair (Amst) 2007; 6: 1243–1254
  • Akey C W, Luger K. Histone chaperones and nucleosome assembly. Current Opinion in Structural Biology 2003; 13: 6–14
  • Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y, Rotman G. Nuclear retention of ATM at sites of DNA double strand breaks. The Journal of Biological Chemistry 2001; 276: 38224–38230
  • Ayoub N, Jeyasekharan A D, Bernal J A, Venkitaraman A R. HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 2008; 453: 682–686
  • Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan M B, Bartek J, Lukas J. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. The Journal of Cell Biology 2006; 173: 195–206
  • Belli M, Cherubini R, Dalla Vecchia M, Dini V, Moschini G, Signoretti C, Simone G, Tabocchini M A, Tiveron P. DNA DSB induction and rejoining in V79 cells irradiated with light ions: A constant field gel electrophoresis study. International Journal of Radiation Biology 2000; 76: 1095–1104
  • Bencokova Z, Kaufmann M R, Pires I M, Lecane P S, Giaccia A J, Hammond E M. ATM activation and signaling under hypoxic conditions. Molecular and Cellular Biology 2009; 29: 526–537
  • Bolte S, Cordelieres F P. A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy 2006; 224: 213–232
  • Boreham D R, Dolling J A, Maves S R, Siwarungsun N, Mitchel R E. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes. Radiation Research 2000; 153: 579–586
  • Bristow R G, Hill R P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nature Reviews Cancer 2008; 8: 180–192
  • Bristow R G, Ozcelik H, Jalali F, Chan N, Vesprini D. Homologous recombination and prostate cancer: A model for novel DNA repair targets and therapies. Radiotherapy and Oncology 2007; 83: 220–230
  • Carney J P, Maser R S, Olivares H, Davis E M, LE Beau M, Yates J RR, Hays L, Morgan W F, Petrini J H. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response. Cell 1998; 93: 477–486
  • Chao N J. Accidental or intentional exposure to ionizing radiation: Biodosimetry and treatment options. Experimental Hematology 2007; 35: 24–27
  • Coates C G, Denvir D J, Mchale N G, Thornbury K D, Hollywood M A. Optimizing low-light microscopy with back-illuminated electron multiplying charge-coupled device: Enhanced sensitivity, speed, and resolution. Journal of Biomedical Optics 2004; 9: 1244–1252
  • Coleman C N, Blakely W F, Fike J R, Macvittie T J, Metting N F, Mitchell J B, Moulder J E, Preston R J, Seed T M, Stone H B, Tofilon P J, Wong R S. Molecular and cellular biology of moderate-dose (1–10 Gy) radiation and potential mechanisms of radiation protection: Report of a workshop at Bethesda, Maryland, December 17–18, 2001. Radiation Research 2003; 159: 812–834
  • Costes S V, Daelemans D, Cho E H, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophysical Journal 2004; 86: 3993–4003
  • Cowell I G, Sunter N J, Singh P B, Austin C A, Durkacz B W, Tilby M J. gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE 2007; 2: e1057
  • Dalton W S, Friend S H. Cancer biomarkers – an invitation to the table. Science 2006; 312: 1165–1168
  • Diaspro A, Chirico G, Collini M. Two-photon fluorescence excitation and related techniques in biological microscopy. Quarterly Reviews of Biophysics 2005; 38: 97–166
  • Downs J A, Lowndes N F, Jackson S P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 2000; 408: 1001–1004
  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A. H2AX: The histone guardian of the genome. DNA Repair (Amst) 2004; 3: 959–967
  • Gavrilov B, Vezhenkova I, Firsanov D, Solovjeva L, Svetlova M, Mikhailov V, Tomilin N. Slow elimination of phosphorylated histone gamma-H2AX from DNA of terminally differentiated mouse heart cells in situ. Biochemical and Biophysical Research Communications 2006; 347: 1048–1052
  • Goodarzi A A, Noon A T, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo P A. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Molecular Cell 2008; 31: 167–177
  • Graf R, Rietdorf J, Zimmermann T. Live cell spinning disk microscopy. Advances in Biochemical Engineering/Biotechnology 2005; 95: 57–75
  • Helleday T, Petermann E, Lundin C, Hodgson B, Sharma R A. DNA repair pathways as targets for cancer therapy. Nature Cancer Reviews 2008; 8: 193–204
  • Helmchen F, Denk W. New developments in multiphoton microscopy. Current Opinion in Neurobiology 2002; 12: 593–601
  • Helmchen F, Denk W. Deep tissue two-photon microscopy. Nature Methods 2005; 2: 932–940
  • Ismail I H, Wadhra T I, Hammarsten O. An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Research 2007; 35: e36
  • Karlsson K H, Stenerlöw B. Focus formation of DNA repair proteins in normal and repair-deficient cells irradiated with high-LET ions. Radiation Research 2004; 161: 517–527
  • Kastan M B. DNA damage responses: Mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture. Molecular Cancer Research 2008; 6: 517–524
  • Kato T A, Nagasawa H, Weil M M, Genik P C, Little J B, Bedford J S. gamma-H2AX foci after low-dose-rate irradiation reveal atm haploinsufficiency in mice. Radiation Research 2006; 166: 47–54
  • Kim J A, Kruhlak M, Dotiwala F, Nussenzweig A, Haber J E. Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. The Journal of Cell Biology 2007; 178: 209–218
  • Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nuclei Acids Research 2008; 26: 5678–5694
  • Klokov D, Macphail S M, Banáth J P, Byrne J P, Olive P L. Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiotherapy and Oncology 2006; 80: 223–229
  • Kobayashi J. Molecular mechanism of the recruitment of NBS1/hMRE11/hRAD50 complex to DNA double-strand breaks: NBS1 binds to gamma-H2AX through FHA/BRCT domain. Journal of Radiation Research (Tokyo) 2004; 45: 473–478
  • Koike M, Mashino M, Sugasawa J, Koike A. Dynamic change of histone H2AX phosphorylation independent of ATM and DNA-PK in mouse skin in situ. Biochemical and Biophysical Research Communications 2007; 363: 1009–1012
  • Koike M, Mashino M, Sugasawa J, Koike A. Histone H2AX phosphorylation independent of ATM after X-irradiation in mouse liver and kidney in situ. Journal of Radiation Research (Tokyo) 2008; 49: 445–449
  • Koike M, Sugasawa J, Koike A, Kohno Y. p53 phosphorylation in mouse skin and in vitro human skin model by high-dose-radiation exposure. Journal of Radiation Research (Tokyo) 2005; 46: 461–468
  • Leatherbarrow E L, Harper J V, Cucinotta F A, O'Neill P. Induction and quantification of gamma-H2AX foci following low and high LET-irradiation. International Journal of Radiation Biology 2006; 82: 111–118
  • Li Q, Lau A, Morris T J, Guo L, Fordyce C B, Stanley E F. A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: Analysis by quantitative immunocolocalization. Journal of Neuroscience 2004; 24: 4070–4081
  • Liu S K, Olive P L, Bristow R G. Biomarkers for DNA DSB inhibitors and radiotherapy clinical trials. Cancer and Metastasis Reviews 2008; 27: 445–458
  • Löbrich M, Ikpeme S, Kiefer J. Measurement of DNA double-strand breaks in mammalian cells by pulsed-field gel electrophoresis: A new approach using rarely cutting restriction enzymes. Radiation Research 1994a; 138: 186–192
  • Löbrich M, Ikpeme S, Kiefer J. DNA double-strand break measurement in mammalian cells by pulsed-field gel electrophoresis: An approach using restriction enzymes and gene probing. International Journal of Radiation Biology 1994b; 65: 623–630
  • Löbrich M, Jeggo P A. Harmonising the response to DSBs: A new string in the ATM bow. DNA Repair (Amst) 2005; 4: 749–759
  • Löbrich M, Rief N, Kühne M, Heckmann M, Fleckenstein J, Rübe C, Uder M. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proceedings of the National Academy of Sciences of the USA 2005; 102: 8984–8989
  • Macphail S H, Banáth J P, Yu T Y, Chu E H, Lambur H, Olive P L. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. International Journal of Radiation Biology 2003; 79: 351–358
  • Manders E M, Stap J, Brakenhoff G J, Van Driel R, Aten J A. Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. Journal of Cell Science 1992; 103(Pt 3)857–862
  • Marková E, Schultz N, Belyaev I Y. Kinetics and dose-response of residual 53BP1/gamma-H2AX foci: Co-localization, relationship with DSB repair and clonogenic survival. International Journal of Radiation Biology 2007; 83: 319–329
  • Moulder J E. Report on an interagency workshop on the radiobiology of nuclear terrorism. Molecular and cellular biology dose (1–10 Sv) radiation and potential mechanisms of radiation protection (Bethesda, Maryland, December 17–18, 2001). Radiation Research 2001; 54: 327–328
  • Mumby M. PP2A: Unveiling a reluctant tumor suppressor. Cell 2007; 130: 21–24
  • Nakada S, Chen G I, Gingras A C, Durocher D. PP4 is a gammaH2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Reports 2008; 9: 1019–1026
  • Nakano A. Spinning-disk confocal microscopy – a cutting-edge tool for imaging of membrane traffic. Cell Structure and Function 2002; 27: 349–355
  • Nowak E, Etienne O, Millet P, Lages C S, Mathieu C, Mouthon M A, Boussin F D. Radiation-induced H2Ax phosphorylation and neural precursor apoptosis in the developing brain of mice. Radiation Research 2006; 165: 155–164
  • Olive P L. DNA damage and repair in individual cells: Applications of the comet assay in radiobiology. International Journal of Radiation Biology 1999; 75: 395–405
  • Olive P L, Banáth J P. Phosphorylation of histone H2AX as a measure of radiosensitivity. International Journal of Radiation, Oncology, Biology, Physics 2004; 58: 331–335
  • Paull T T, Rogakou E P, Yamazaki V, Kirchgessner C U, Gellert M, Bonner W M. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Current Biology 2000; 10: 886–895
  • Pawley J B. Handbook of biological confocal microscopy3rd ed. Springer, New York 2006
  • Qvarnström O F, Simonsson M, Johansson K A, Nyman J, Turesson I. DNA double strand break quantification in skin biopsies. Radiotherapy and Oncology 2004; 72: 311–317
  • Rakhorst H A, Tra W M, Posthumus-Van Sluijs S T, Hovius S E, Levendag P C, Kanaar R, Hofer S O. Quantitative analysis of radiation-induced DNA break repair in a cultured oral mucosal model. Tissue Engineering 2006; 12: 3395–3403
  • Rappold I, Iwabuchi K, Date T, Chen J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. Journal of Biological Chemistry 2001; 153: 613–620
  • Redon C, Pilch D R, Rogakou E P, Orr A H, Lowndes N F, Bonner W M. Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Reports 2003; 4: 678–684
  • Rogakou E P, Boon C, Redon C, Bonner W M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. Journal of Cell Biology 1999; 146: 905–916
  • Ronneberger O, Baddeley D, Scheipl F, Verveer P J, Burkhardt H, Cremer C, Fahrmeir L, Cremer T, Joffe B. Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosome Research 2008; 16: 523–562
  • Rothkamm K, Kruger I, Thompson L H, Löbrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Molecular and Cellular Biology 2003; 23: 5706–5715
  • Rübe C E, Grudzenski S, Kühne M, Dong X, Rief N, Löbrich M, Rübe C. DNA double-strand break rejoining in complex normal tissues. International Journal of Radiation Oncology Biology and Physics 2008a; 72: 1180–1187
  • Rübe C E, Grudzenski S, Kühne M, Dong X, Rief N, Löbrich M, Rübe C. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: Implications for radiosensitivity testing. Clinical Cancer Research 2008b; 14: 6546–6555
  • Russ J C. The image processing handbook5th ed. CRC Press, New York 2007
  • Sak A, Grehl S, Erichsen P, Engelhard M, Grannass A, Levegrün S, Pöttgen C, Groneberg M, Stuschke M. gamma-H2AX foci formation in peripheral blood lymphocytes of tumor patients after local radiotherapy to different sites of the body: Dependence on the dose-distribution, irradiated site and time from start of treatment. International Journal of Radiation Biology 2007; 83: 639–652
  • Scanziani E. Immunohistochemical staining of fixed tissues. Methods in Molecular Biology 1998; 104: 133–140
  • Schultz L B, Chehab N H, Malikzay A, Halazonetis T D. P53 Binding Protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. The Journal of Cell Biology 2000; 151: 1381–1390
  • Shaw P J. Comparison of widefield/deconvolution and confocal microscopy for three-dimensional imaging. Handbook of biological confocal microscopy3rd ed, J P Pawley. Springer, New York 2006; 453–467
  • Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner W M, Petrini J H, Haber J E, Lichten M. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Current Biology 2004; 14: 1703–1711
  • Simonsson M, Qvarnström F, Nyman J, Johansson K, Garmo H, Turesson I. Low-dose hypersensitive gammaH2AX response and infrequent apoptosis in epidermis from radiotherapy patients. Radiotherapy and Oncology 2008; 88: 388–397
  • Tannock I, Hill R P, Bristow R G, Harrington L. Basic science of oncology4th ed. McGraw-Hill Professional, New York 2005
  • Tauchi H, Kobayashi J, Morishima K, Matsuura S, Nakamura A, Shiraishi T, Ito E, Masnada D, Delia D, Komatsu K. The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50.hMRE11.NBS1 complex DNA repair activity. Journal of Biological Chemistry 2001; 276: 12–15
  • Ueno S, Kashimoto T, Susa N, Natsume H, Toya M, Ito N, Takeda-Homma S, Nishimura Y, Sasaki Y F, Sugiyama M. Assessment of DNA damage in multiple organs of mice after whole body X-irradiation using the comet assay. Mutation Research 2007; 634: 135–145
  • Van Steensel B, Van Binnendijk E P, Hornsby C D, Van Der Voort H T, Krozowski Z S, De Kloet E R, Van Driel R. Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. Journal of Cell Science 1996; 109: 787–792
  • Wallace W, Schaefer L H, Swedlow J R. A working person's guide to deconvolution in light microscopy. Biotechniques 2001; 31: 1076–1082
  • Werner M, Chott A, Fabiano A, Battifora H. Effect of formalin tissue fixation and processing on immunohistochemistry. The American Journal of Surgical Pathology 2000; 24: 1016–1019
  • Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz D C, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biology 2006; 8: 870–876

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.