1,391
Views
123
CrossRef citations to date
0
Altmetric
50th Anniversary Review

Biological characteristics of carbon-ion therapy

&
Pages 715-728 | Received 08 Oct 2008, Accepted 26 May 2009, Published online: 22 Sep 2009

References

  • Alpen E L, Powers-Risius P. The relative biological effect of high-Z, high-LET charged particles for spermatogonial killing. Radiation Research 1981; 88: 132–143
  • Ando K, Koike S, Oohira C, Ogiu T, Yatagai F. Tumor induction in mice locally irradiated with carbon ions: A retrospective analysis. Journal of Radiation Research 2005b; 46: 185–190
  • Ando K, Koike S, Uzawa A, Takai N, Fukawa T, Furusawa Y, Aoki M, Miyato Y. Biological gain of carbon-ion radiotherapy for the early response of tumor growth delay and against early response of skin reaction in mice. Journal of Radiation Research 2005a; 46: 51–57
  • Ando S, Nojima K, Ishihara H, Suzuki M, Ando M, Majima H, Ando K, Kuriyama T. Induction by carbon-ion irradiation of the expression of vascular endothelial growth factor in lung carcinoma cells. International Journal of Radiation Biology 2000; 76: 1121–1127
  • Aoki M, Furusawa Y, Yamada T. LET dependency of heavy-ion induced apoptosis in V79 cells. Journal of Radiation Research 2000; 41: 163–175
  • Asakawa I, Yoshimura H, Takahashi A, Ohnishi K, Nakagawa H, Ota I, Furusawa Y, Tamamoto T, Ohishi H, Ohnishi T. Radiation-induced growth inhibition in transplanted human tongue carcinomas with different p53 gene status. Anticancer Research 2002; 22: 2037–2043
  • Barendsen G W. RBE-LET relationships for different types of lethal radiation damage in mammalian cells: Comparison with DNA dsb and an interpretation of differences in radiosensitivity. International Journal of Radiation Biology 1994; 66(5)433–436
  • Basaki K, Abe Y, Tatsuzaki H, Akaizawa T, Ando S, Ando K. Relative biological effects of carbon ion beams on mouse intestinal crypts. The Journal of JASTRO 1998; 10: 27–33, [in Japanese]
  • Bettega D. Cell transformation by light charged particles: Review of available data. Radiothery & Oncology 2004; 73(Suppl. 2)S155–157
  • Bettega D, Calzolari P, Doneda L, Durante M, Tallone L. Early and delayed reproductive death in human cells exposed to high energy iron ion beams. Advance in Space Research 2005; 35: 280–285
  • Blakely E A, Ngo F, Curtis S B, Tobias C A. Heavy-ion radiobiology: Celular studies. Advances in Radiation Biology 1984; 11: 295–389
  • Castro J R, Linstadt D E, Bahary J P, Petti P L, Daftari I, Collier J M, Gutin P H, Gauger G, Phillips T L. Experience in charged particle irradiation of tumors of the skull base: 1977–1992. International Journal of Radiation Oncology, Biology and Physics 1994; 29: 647–655
  • Castro J R, Phillips T L, Pardons M, Gutting P, Larson D A, Patti P L, Dafter I K, Collier J M, Lillis-Hearne P. Neon heavy charged particle radiotherapy of glioblastoma of the brain. International Journal of Radiation Oncology, Biology and Physics 1997; 38(2)257–261
  • Chatterjee A, Schaefer H J. Microdosimetric structure of heavy ion tracks in tissue. Radiation and Environmental Biophysics 1976; 13: 215–227
  • Cucinotta F A, Durante M. Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings. Lancet Oncology 2006; 7: 431–435
  • Curtis S B, Schilling W A, Tenforde T S, Crabtree K E, Tenforde S D, Howard, Lyman J T. Survival of oxygenated and hypoxic tumor cells in the extended-peak regions of heavy charged-particle beams. Radiation Research 1982; 90: 292–309
  • Debus J, Haberer T, Schulz-Ertner D, Jakel O, Wenz F, Enghardt W, Schlegel W, Kraft G, Wannenmacher M. Carbon ion irradiation of skull base tumors at GSI. First clinical results and future perspectives. Strahlentherapie und Onkologie 2000; 176: 211–216
  • Debus J, Scholz M, Haberer T, Peschke P, Jakel O, Karger C P, Wannenmacher M. Radiation tolerance of the rat spinal cord after single and split doses of photons and carbon ions. Radiation Research 2003; 160: 536–542
  • Durante M, Cucinotta F A. Heavy ion carcinogenesis and human space exploration. Nature Reviews Cancer 2008; 8: 465–472
  • Durante M, George K, Gialanella G, Grossi G, La Tessa C, Manti L, Miller J, Pugliese M, Scampoli P, Cucinotta F A. Cytogenetic effects of high-energy iron ions: Dependence on shielding thickness and material. Radiation Research 2005; 164: 571–576
  • Durante M, Gialanella G, Grossi G, Pugliese M, Scampoli P, Kawata T, Yasuda N, Furusawa Y. Influence of the shielding on the induction of chromosomal aberrations in human lymphocytes exposed to high-energy iron ions. Journal of Radiation Research 2002; 43(Suppl)S107–111
  • Eguchi-Kasai K, Murakami M, Itsukaichi H, Fukutsu K, Kanai T, Furusawa Y, Sato K, Ohara H, Yatagai F. The role of DNA repair on cell killing by charged particles. Advance in Space Research 1996; 18: 109–118
  • Endo S, Tanaka K, Ishikawa M, Hoshi M, Onizuka Y, Takada M, Yamaguchi H, Hayabuchi N, Maeda N, Shizuma K. Microdosimetric evaluation of the 400 MeV/nucleon carbon beam at HIMAC. Medical Physics 2005; 32: 3843–3848
  • Errington R D, Ashby D, Gore S M, Abrams K R, Myint S, Bonnett D E, Blake S W, Saxton T E. High energy neutron treatment for pelvic cancers: Study stopped because of increased mortality. British Medical Journal 1991; 302: 1045–1051
  • Fournier C, Scholz M, Weyrather W K, Rodemann H P, Kraft G. Changes of fibrosis-related parameters after high- and low-LET irradiation of fibroblasts. International Journal of Radiation Biology 2001; 77: 713–722
  • Fournier C, Taucher-Scholz G. Radiation induced cell cycle arrest: An overview of specific effects following high-LET exposure. Radiotherapy & Oncology 2004; 73(Suppl. 2)S119–122
  • Fowler P H, Perkins D H. The possibility of therapeutic applications of beams of negative pi-mesons. Nature 1961; 189: 524–528
  • Fu K K, Phillips T L, Heilbron D C, Ross G, Kane L J. Relative biological effectiveness of low- and high-LET radiotherapy beams for jejunal crypt cell survival at low doses per fraction. Radiology 1979; 132: 205–209
  • Fukutsu K, Kanai T, Furusawa Y, Ando K. Response of mouse intestine after single and fractionated irradiation with accelerated carbon ions with a spread-out Bragg peak. Radiation Research 1997; 148: 168–174
  • Furusawa Y, Aoki M, Durante M. Simultaneous exposure of mammalian cells to heavy ions and X-rays. Advance in Space Research 2002; 30(4)877–884
  • Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, Yatagai F, Kanai, Ando K. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams. Radiation Research 2000; 154: 485–496
  • George K, Durante M, Willingham V, Wu H, Yang T C, Cucinotta F A. Biological effectiveness of accelerated particles for the induction of chromosome damage measured in metaphase and interphase human lymphocytes. Radiation Research 2003; 160: 425–435
  • Goldstein L S, Phillips T L, Ross G Y. Enhancement by fractionation of biological peak-to-plateau relative biological effectiveness ratios for heavy ions. International Journal of Radiation Oncology, Biology and Physics 1978; 4: 1033–1037
  • Goldstein L S, Phillips T L, Ross G Y. Biological effects of accelerated heavy ions. II. Fractionated irradiation of intestinal crypt cells. Radiation Research 1981; 86: 542–558
  • Goodhead D T, Belli M, Mill A J, Bance D A, Allen L A, Hall S C, Ianzani F, Simone G, Stevens D L, Stretch A. Direct comparison between protons and alpha-particles of the same LET: I. Irradiation methods and inactivation of asynchronous V79, HeLa and C3H 10T1/2 cells. International Journal of Radiation Biology 1992; 61: 611–624
  • Goodhead D T, Munson R J, Thacker, Cox R. Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated heavy ions. IV. Biophysical interpretation. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine 1980; 37: 135–167
  • Gray L H, Conger A D, Ebert M, Hornsey S, Scott O C. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. The British Journal of Radiology 1953; 26: 638–648
  • Hada M, Georgakilas A G. Formation of clustered DNA damage after high-LET irradiation: A review. Journal of Radiation Research 2008; 49: 203–210
  • Hall E, Giaccia A G. Linear energy transfer and relative biological effectiveness. Radiobiology for the radiologist. 6th ed. Lippincott Williams & Wilkins, Philadelphia 2006; 107
  • Hamada N, Hara T, Funayama T, Sakashita T, Kobayashi Y. Energetic heavy ions accelerate differentiation in the descendants of irradiated normal human diploid fibroblasts. Mutatation Research 2008; 637: 190–196
  • Han Z B, Suzuki H, Suzuki F, Suzuki M, Furusawa Y, Kato T, Ikenaga M. Relative biological effectiveness of accelerated heavy ions for induction of morphological transformation in Syrian hamster embryo cells. Journal of Radiation Research 1998; 39: 193–201
  • Higo M, Uzawa K, Kawata T, Kato Y, Kouzu Y, Yamamoto N, Shibahara T, Mizoe J E, Ito H, Tsujii H, Tanzawa H. Enhancement of SPHK1 in vitro by carbon ion irradiation in oral squamous cell carcinoma. International Journal of Radiation Oncology, Biology and Physics 2006; 65: 867–875
  • Hirao Y, Ogawa H, Yamada S, Sato Y, Yamada T, Sato K, Itano A, Kanazawa M, Noda K, Kawachi K, Endo M, Kanai T, Kohno T, Sudou M, Minohara S, Kitagawa A, Soga F, Takada E, Watanabe S, Endo K, Kumada M, Matsumoto S. Heavy ion synchrotron for medical use: HIMAC project at NIRS. Nuclear Physics A 1992; 538: 541–550
  • Hirayama R, Furusawa Y, Fukawa T, Ando K. Repair kinetics of DNA-DSB induced by X-rays or carbon ions under toxic and hypoxic conditions. Journal of Radiation Research 2005; 46(3)325–332
  • International Commission on Radiation Units and Measurements (ICRU). Linear Energy Transfer. ICRU report 1970; 16: 14
  • Imaoka T, Nishimura M, Kakinuma S, Hatano Y, Ohmachi Y, Yoshinaga S, Kawano A, Maekawa A, Shimada Y. High relative biologic effectiveness of carbon ion radiation on induction of rat mammary carcinoma and its lack of H-ras and Tp53 mutations. International Journal of Radiation Oncology, Biology and Physics 2007; 69: 194–203
  • Iwadate Y, Mizoe J, Osaka Y, Yamaura A, Tsujii H. High linear energy transfer carbon radiation effectively kills cultured glioma cells with either mutant or wild-type p53. International Journal of Radiation Oncology, Biology and Physics 2001; 50: 803–808
  • Jin X D, Gong L, Guo C L, Hao J F, Wei W, Dai Z Y, Li Q. Survivin expressions in human hepatoma HepG2 cells exposed to ionizing radiation of different LET. Radiation and Environmental Biophysics 2008; 47: 399–404
  • Kagawa K, Murakami M, Hishikawa Y, Abe M, Akagi T, Yanou T, Kagiya G, Furusawa Y, Ando K, Nojima K, Aoki M, Kanai T. Preclinical biological assessment of proton and carbon ion beams at Hyogo Ion Beam Medical Center. International Journal of Radiation Oncology, Biology and Physics 2002; 54: 928–938
  • Karger C P, Peschke P, Sanchez-Brandelik R, Scholz M, Debus J. Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: Experimental results and clinical implications. International Journal of Radiation Oncology, Biology and Physics 2006; 66: 1488–1497
  • Kase Y, Kanai T, Matsumoto Y, Furusawa Y, Okamoto H, Asaba T, Sakama M, Shinoda H. Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiation Research 2006; 166: 629–638
  • Katz R, Ackerson B, Homayoonfar M, Sharma S C. Inactivation of cells by heavy ion bombardment. Radiation Research 1971; 47: 402–425
  • Kawasaki S, Shibuya K, Asami J, Komatsu M, Kuroda M, Hiraki Y, Furusawa Y. Biological effectiveness and repair of potentially lethal damage after heavy-ion radiation. Bulletin of School of Health Sciences, Okayama University. 1998; 9: 75–81, [in Japanese]
  • Kawata T, Durante M, Furusawa Y, George K, Ito H, Wu H, Cucinotta F A. G2-chromosome aberrations induced by high-LET radiations. Advances in Space Research 2001a; 27: 383–391
  • Kawata T, Durante M, Furusawa Y, George K, Takai N, Wu H, Cucinotta F A. Dose-response of initial G2-chromatid breaks induced in normal human fibroblasts by heavy ions. International Journal of Radiation Biology 2001b; 77: 165–174
  • Kellerer A M, Rossi H H. A generalized formulation of dual radiation action. Radiation Research 1978; 75: 471–488
  • Kiefer J, Straaten H. A model of ion track structure based on classical collision dynamics. Physics in Medicine and Biology 1986; 31: 1201–1209
  • Kraft G. Radiotherapy with heavy ions: Radiobiology, clinical indications and experience at GSI, Darmstadt. Tumori 1998; 84: 200–204
  • Leith J T. Heavy-ion radiobiology: Normal tissue studies. Advances in Radiation Biology 1983; 10: 192–236
  • Leith J T, McDonald M, Powers-Risius P, Bliven S F, Howard J. Response of rat spinal cord to single and fractionated doses of accelerated heavy ions. Radiation Research 1982; 89: 176–193
  • Leith J T, Schilling W A, Lyman J T, Howard J. Comparison of skin responses of mice after single or fractionated exposure to cyclotron-accelerated helium ions and 230 kv x-irradiation. Radiation Research 1975; 62: 195–215
  • Lenarczyk M, Ueno A, Vannais D B, Kraemer S, Kronenberg A, Roberts J C, Tatsumi K, Hei T K, Waldren C A. The ‘pro-drug’ RibCys decreases the mutagenicity of high-LET radiation in cultured mammalian cells. Radiation Research 2003; 160: 579–583
  • Luxton G, Fessenden P, Hoffmann W. Microdosimetric measurements of pretherapeutic heavy ion beams. Radiation Research 1979; 79: 256–272
  • Maor M H, Errington R D, Caplan R J, Griffin T W, Laramore G E, Parker R G, Burnison M, Stetz J, Zink S, Davis L W. Fast-neutron therapy in advanced head and neck cancer: A collaborative international randomized trial. International Journal of Radiation Oncology, Biology and Physics 1995; 32: 599–604
  • Matsui Y, Asano T, Kenmochi T, Iwakawa M, Imai T, Ochiai T. Effects of carbon-ion beams on human pancreatic cancer cell lines that differ in genetic status. American Journal of Clinical Oncology 2004; 27: 24–28
  • Matsumoto Y, Iwakawa M, Furusawa Y, Ishikawa K, Aoki M, Imadome K, Matsumoto I, Tsujii H, Ando K, Imai T. Gene expression analysis in human malignant melanoma cell lines exposed to carbon beams. International Journal of Radiation Biology 2008; 84: 299–314
  • Matsuzaki H, Miyamoto T, Miyazawa Y, Okazumi S, Koide Y, Isono K. Biological effects of heavy ion beam on human breast cancers. Breast Cancer 1998; 5: 261–268
  • Mitra A K, Bhat N, Sarma A, Krishna M. Alteration in the expression of signaling parameters following carbon ion irradiation. Molecular and Cellular Biochemistry 2005; 276: 169–173
  • Monobe M, Ando K. Drinking beer reduces radiation-induced chromosome aberrations in human lymphocytes. Journal of Radiation Research 2002; 43: 237–245
  • Monobe M, Arimoto-Kobayashi S, Ando K. Beta-pseudouridine, a beer component, reduces radiation-induced chromosome aberrations in human lymphocytes. Mutatation Research 2003a; 538: 93–99
  • Monobe M, Koike S, Uzawa A, Ando K. Effects of beer administration in mice on acute toxicities induced by X rays and carbon ions. Journal of Radiation Research 2003b; 44: 75–80
  • Nakadai T, Nojima K, Kobayashi I, Sato K, Yasuda N, Mitani H, Hino O. HZE radiation effects for hereditary renal carcinomas. Uchu Seibutsu Kagaku 2004; 18: 177–178
  • Ofuchi T, Suzuki M, Kase Y, Ando K, Isono K, Ochiai T. Chromosome breakage and cell lethality in human hepatoma cells irradiated with X rays and carbon-ion beams. Journal of Radiation Research 1999; 40: 125–133
  • Ohara H, Okazaki N, Monobe M, Watanabe S, Kanayama M, Minamihisamatsu M. Induction of asymmetrical type of chromosomal aberrations in cultured human lymphocytes by ion beams of different energies at varying LET from HIMAC and RRC. Advances in Space Research 1998; 22: 1673–1682
  • Okayasu R, Okada M, Okabe A, Noguchi M, Takakura K, Takahashi S. Repair of DNA damage induced by accelerated heavy ions in mammalian cells proficient and deficient in the non-homologous end-joining pathway. Radiation Research 2006; 165: 59–67
  • Petin V G, Kim J K. Liquid holding recovery kinetics in wild-type and radiosensitive mutants of the yeast Saccharomyces exposed to low- and high-LET radiations. Mutation Research 2005; 570: 1–8
  • Pinto M, Prise K M, Michael B D. Quantification of radiation induced DNA double-strand breaks in human fibroblasts by PFGE: Testing the applicability of random breakage models. International Journal of Radiation Biology 2002; 78: 375–388
  • Puck T T. Action of X-rays on mammalian cells. Journal of Experimental Medicine 1956; 106: 653–667
  • Raju M R. Chapter 7: Negative pions. Heavy particle radiotherapy. Academic Press, New York 1980; 356–450
  • Raju M R. Particle radiotherapy: Historical developments and current status. Radiation Research 1996; 145: 391–407
  • Raju M R, Carpenter S G. A heavy particle comparative study. Part IV: Acute and late reactions. The British Journal of Radiology 1978; 51: 720–727
  • Ritter S, Nasonova E, Furusawa Y, Ando K. Relationship between aberration yield and mitotic delay in human lymphocytes exposed to 200 MeV/u Fe-ions or X-rays. Journal of Radiation Research 2002; 43(Suppl)S175–179
  • Rydberg B, Cooper B, Cooper P K, Holley W R, Chatterjee A. Dose-dependent misrejoining of radiation-induced DNA double-strand breaks in human fibroblasts: Experimental and theoretical study for high- and low-LET radiation. Radiation Research 2005; 163: 526–534
  • Sasaki H, Yatagai F, Kanai T, Furusawa Y, Hanaoka F, Zhu W G, Mehnati P. Dependence of induction of interphase death of Chinese hamster ovary cells exposed to accelerate heavy ions on linear energy transfer. Radiation Research 1997; 148: 449–454
  • Schmollack J U, Klaumuenzer S L, Kiefer J. Stochastic radial dose distributions and track structure theory. Radiation Research 2000; 153: 469–478
  • Scholz M, Kraft G. Track structure and the calculation of biological effects of heavy charged particles. Advances in Space Research 1996; 18: 5–14
  • Shao C, Aoki M, Furusawa Y. Medium-mediated bystander effects on HSG cells co-cultivated with cells irradiated by X-rays or a 290 MeV/u carbon beam. Journal of Radiation Research 2001; 42: 305–316
  • Skarsgard L D. Radiobiology with heavy charged particles: A historical review. Physica Medica 1998; 14(Suppl. 1)1–19
  • Suzuki M, Kase Y, Kanai T, Ando K. Change in radiosensitivity with fractionated-dose irradiation of carbon-ion beams in five different human cell lines. International Journal of Radiation Oncology, Biology and Physics 2000a; 48: 251–258
  • Suzuki M, Kase Y, Kanai T, Ando K. Correlation between cell killing and residual chromatin breaks measured by PCC in six human cell lines irradiated with different radiation types. International Journal of Radiation Biology 2000b; 76: 1189–1196
  • Suzuki M, Kase Y, Nakano T, Kanai T, Ando K. Residual chromatin breaks as biodosimetry for cell killing by carbon ions. Advances in Space Research 1998; 22: 1663–1671
  • Suzuki M, Kase Y, Yamaguchi H, Kanai T, Ando K. Relative biological effectiveness for cell-killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams. International Journal of Radiation Oncology, Biology and Physics 2000c; 48: 241–250
  • Suzuki M, Watanabe M, Kanai T, Kase Y, Yatagai F, Kato T, Matsubara S. LET dependence of cell death, mutation induction and chromatin damage in human cells irradiated with accelerated carbon ions. Advances in Space Research 1996; 18: 127–136
  • Takahashi A, Matsumoto H, Furusawa Y, Ohnishi K, Ishioka N, Ohnishi T. Apoptosis induced by high-LET radiations is not affected by cellular p53 gene status. International Journal of Radiation Biology 2005; 81: 581–586
  • Takahashi A, Matsumoto H, Yuki K, Yasumoto J, Kajiwara A, Aoki M, Furusawa Y, Ohnishi K, Ohnishi T. High-LET radiation enhanced apoptosis but not necrosis regardless of p53 status. International Journal of Radiation Oncology, Biology and Physics 2004; 60: 591–597
  • Takahashi A, Ohnishi K, Ota I, Asakawa I, Tamamoto T, Furusawa Y, Matsumoto H, Ohnishi T. p53-dependent thermal enhancement of cellular sensitivity in human squamous cell carcinomas in relation to LET. International Journal of Radiation Biology 2001; 77: 1043–1051
  • Takahashi A, Ohnishi K, Tsuji K, Matsumoto H, Aoki H, Wang X, Tamamoto T, Yukawa O, Furusawa Y, Ejima Y, Tachibana A, Ohnishi T. WAF1 accumulation by carbon-ion beam and alpha-particle irradiation in human glioblastoma cultured cells. International Journal of Radiation Biology 2000; 76: 335–341
  • Takahashi Y, Teshima T, Kawaguchi N, Hamada Y, Mori S, Madachi A, Ikeda S, Mizuno H, Ogata T, Nojima K, Furusawa Y, Matsuura N. Heavy ion irradiation inhibits in vitro angiogenesis even at sublethal dose. Cancer Research 2003; 63: 4253–4257
  • Takahashi A, Yano T, Matsumoto H, Wang X, Ohnishi K, Tamamoto T, Tsuji K, Yukawa O, Ohnishi T. Effects of accelerated carbon-ions on growth inhibition of transplantable human esophageal cancer in nude mice. Cancer Letters 1998; 122: 181–186
  • Terato H, Tanaka R, Nakaarai Y, Nohara T, Doi Y, Iwai S, Hirayama R, Furusawa Y, Ide H. Quantitative analysis of isolated and clustered DNA damage induced by gamma-rays, carbon ion beams, and iron ion beams. Journal of Radiation Research 2008; 49: 133–146
  • Tobias C A, Anger H O, Lawrence J H. Radiological use of high energy deuterons and alpha particles. The American Journal of Roentgenology, Radium Therapy, and Nuclear Medicine 1952; 67: 1–27
  • Tobias C A, Lawrence J H, Born J L, Mc C R, Roberts J E, Anger H O, Low-Beer B V, Huggins C B. Pituitary irradiation with high-energy proton beams: A preliminary report. Cancer Research 1958; 18: 121–134
  • Tomizawa M, Miyamoto T, Kato H, Otsu H. Relative biological effectiveness of carbon ions for causing fatal liver failure after partial hepatectomy in mice. Journal of Radiation Research 2000; 41: 151–161
  • Tsuboi K, Moritake T, Tsuchida Y, Tokuuye K, Matsumura A, Ando K. Cell cycle checkpoint and apoptosis induction in glioblastoma cells and fibroblasts irradiated with carbon beam. Journal of Radiation Research 2007; 48: 317–325
  • Tsuchida Y, Tsuboi K, Ohyama H, Ohno T, Nose T, Ando K. Cell death induced by high-linear-energy transfer carbon beams in human glioblastoma cell lines. Brain Tumor Pathology 1998; 15: 71–76
  • Tsujii H, Mizoe J E, Kamada T, Baba M, Kato S, Kato H, Tsuji H, Yamada S, Yasuda S, Ohno T, Yanagi T, Hasegawa A, Sugawara T, Ezawa H, Kandatsu S, Yoshikawa K, Kishimoto R, Miyamoto T. Overview of clinical experiences on carbon ion radiotherapy at NIRS. Radiothery & Oncology 2004; 73(Suppl. 2)S41–49
  • Tsujii H, Mizoe J, Kamada T, Baba M, Tsuji H, Kato H, Kato S, Yamada S, Yasuda S, Ohno T, Yanagi T, Imai R, Kagei K, Kato H, Hara R, Hasegawa A, Nakajima M, Sugane N, Tamaki N, Takagi R, Kandatsu S, Yoshikawa K, Kishimoto R, Miyamoto T. Clinical results of carbon ion radiotherapy at NIRS. Journal of Radiation Research 2007; 48(Suppl. A)A1–13
  • Tsuruoka C, Suzuki M, Hande M P, Furusawa Y, Anzai K, Okayasu R. The difference in LET and ion species dependence for induction of initially measured and non-rejoined chromatin breaks in normal human fibroblasts. Radiation Research 2008; 170: 163–171
  • Tsuruoka C, Suzuki M, Kanai T, Fujitaka K. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiation Research 2005; 163: 494–500
  • von Essen C F, Bagshaw M A, Bush S E, Smith A R, Kligerman M M. Long-term results of pion therapy at Los Alamos. International Journal of Radiation Oncology, Biology and Physics 1987; 13: 1389–1398
  • Wang H, Wang X, Zhang P, Wang Y. The Ku-dependent non-homologous end-joining but not other repair pathway is inhibited by high linear energy transfer ionizing radiation. DNA Repair 2008a; 7: 725–733
  • Wang J, Li R, Guo C, Fournier C, Weyrather K W. The influence of fractionation on cell survival and premature differentiation after carbon ion irradiation. Journal of Radiation Research 2008b; 49: 391–398
  • Weyrather W K, Kraft G. RBE of carbon ions: Experimental data and the strategy of RBE calculation for treatment planning. Radiothery & Oncology 2004; 73(Suppl. 2)S161–169
  • Weyrather W K, Ritter S, Scholz M, Kraft G. RBE for carbon track-segment irradiation in cell lines of differing repair capacity. International Journal of Radiation Biology 1999; 75: 1357–1364
  • Wilson R. Radiological use of fast protons. Radiology 1946; 47: 487–491
  • Wilson R. A brief history of the Harvard University cyclotron. Harvard University Press. 2004
  • Yamakawa N, Takahashi A, Mori E, Imai Y, Furusawa Y, Ohnishi K, Kirita T, Ohnishi T. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation. Cancer Science 2008; 99: 1455–1460
  • Yang T C, Craise L M, Mei M T, Tobias C A. Neoplastic cell transformation by heavy charged particles. Radiation Research Suppl 1985; 8: S177–187
  • Yang T C, Tobias C A. Neoplastic cell transformation by energetic heavy ions and its modification with chemical agents. Advances in Space Research 1984; 4: 207–218
  • Yashiro T, Koyama-Saegusa K, Imai T, Fujisawa T, Miyamoto T. Inhibition of potential lethal damage repair and related gene expression after carbon-ion beam irradiation to human lung cancer grown in nude mice. Journal of Radiation Research 2007; 48: 377–383
  • Yokota Y, Yamada S, Hase Y, Shikazono N, Narumi I, Tanaka A, Inoue M. Initial yields of DNA double-strand breaks and DNA Fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions. Radiation Research 2007; 167: 94–101
  • Yoshikawa I, Takatsuji T, Hoshi M, Takada J, Kanai T, Furusawa Y, Nikjoo H, Ikenaga M. The relative biological effectiveness of accelerated carbon ions with different LET for inducing mitotic crossing over and intragenic reversion of the white-ivory allele in Drosophila larvae. International Journal of Radiation Biology 1998; 74: 239–248

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.