289
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Radiation dose rate affects the radiosensitization of MCF-7 and HeLa cell lines to X-rays induced by dextran-coated iron oxide nanoparticles

, , , &
Pages 757-763 | Received 29 Oct 2016, Accepted 12 Apr 2017, Published online: 17 May 2017

References

  • Calugaru V, Magne N, Herault J, Bonvalot S, Le Tourneau C, Thariat J. 2015. [Nanoparticles and radiation therapy]. Bull Cancer. 102:83–91.
  • Dwivedi S, Siddiqui MA, Farshori NN, Ahamed M, Musarrat J, Al-Khedhairy AA. 2014. Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells. Colloids Surf B Biointerfaces. 122:209–215.
  • Goudarzi M, Mak TD, Chen C, Smilenov LB, Brenner DJ, Fornace AJ. 2014. The effect of low dose rate on metabolomic response to radiation in mice. Radiat Environ Biophys. 53:645–657.
  • Hall EJ, Giaccia AJ. 2006. Radiobiology for the radiologist. 6th ed. Philadelphia (PA): Lippincott Williams & Wilkins.
  • Huang F-K, Chen W-C, Lai S-F, Liu C-J, Wang C-L, Wang C-H, Chen H-H, Hua T-E, Cheng Y-Y, Wu M. 2009. Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles. Phys Med Biol. 55:469–482.
  • Jeremic B, Aguerri AR, Filipovic N. 2013. Radiosensitization by gold nanoparticles. Clin Transl Oncol. 15:593–601.
  • Khakbazan Z, Roudsari RL, Taghipour A, Mohammadi E, Pour RO. 2014. Appraisal of breast cancer symptoms by Iranian women: entangled cognitive, emotional and socio-cultural responses. Asian Pac J Cancer Prev. 15:8135–8142.
  • Khoei S, Mahdavi SR, Fakhimikabir H, Shakeri-Zadeh A, Hashemian A. 2014. The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int J Radiat Biol. 90:351–356.
  • Khoshgard K, Hashemi B, Arbabi A, Rasaee MJ, Soleimani M. 2012. Radiosensitization effect of PEGylated gold nanoparticles in orthovoltage X-ray irradiation of the MCF-7 cancerous cell line. Modares J Med Sci Pathol. 15:11–22.
  • Kwatra D, Venugopal A, Anant S. 2013. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2:330–342.
  • Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. 2014. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 11:1449–1470.
  • Linam J, Yang L-X. 2015. Recent developments in radiosensitization. Anticancer Res. 35:2479–2485.
  • Ling C, Stickler R, Schell M, Spiro I. 1987. The effect of hypoxic cell sensitizers at different irradiation dose rates. Radiat Res. 109:396–406.
  • Ling CC, Gerweck LE, Zaider M, Yorke E. 2010. Dose-rate effects in external beam radiotherapy redux. Radiother Oncol. 95:261–268.
  • Mafakhei H, Khoshgard K, Haghparast A, Mostafaie A, Eivazi M-T, Rezaei M. 2016. Investigating the radiosensitivity effect of dextran-coated iron oxide nanoparticles on cervical cancerous cells irradiated with 6 MV photon beams. J Mazandaran Univ Med Sci. 26:162–170.
  • Mesbahi A, Jamali F, Gharehaghaji N. 2013. Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. Bioimpacts. 3:29–35.
  • Moga MA, Dimienescu OG, Arvatescu CA, Mironescu A, Dracea L, Ples L. 2016. The role of natural polyphenols in the prevention and treatment of cervical cancer, an overview. Molecules. 21:E1055.
  • Paunesku T, Gutiontov S, Brown K, Woloschak GE. 2015. Radiosensitization and nanoparticles. Cancer Treat Res. 166:151–171.
  • Popa C, Prodan A, Ciobanu C, Predoi D. 2016. The tolerability of dextran-coated iron oxide nanoparticles during in vivo observation of the rats. Gen Physiol Biophys. 35:299–310.
  • Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, Davidson R, Geso M. 2009. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotech Biol Med. 5:136–142.
  • Remya N, Syama S, Sabareeswaran A, Mohanan P. 2016. Toxicity, toxicokinetics and biodistribution of dextran stabilized iron oxide nanoparticles for biomedical applications. Int J Pharm. 511:586–598.
  • Retif P, Pinel S, Toussaint M, Frochot C, Chouikrat R, Bastogne T, Barberi-Heyob M. 2015. Nanoparticles for radiation therapy enhancement: the key parameters. Theranostics. 5:1030–1044.
  • Rodin D, Grover S, Elmore SN, Knaul FM, Atun R, Caulley L, Herrera CA, Jones JA, Price AJ, Munshi A. 2016. The power of integration: radiotherapy and global palliative care. Ann Palliat Med. 5:209–217.
  • Steel GG, Down JD, Peacock JH, Stephens TC. 1986. Dose-rate effects and the repair of radiation damage. Radiother Oncol. 5:321–331.
  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. 2015. Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108.
  • Williams JR, Zhang Y, Zhou H, Gridley DS, Koch CJ, Slater JM, Little JB. 2008. Overview of radiosensitivity of human tumor cells to low-dose-rate irradiation. Int J Radiat Oncol Biol Phys. 72:909–917.
  • Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR. 2004. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem. 76:1316–1321.
  • Zabihzadeh M, Arefian SS, Shams N. 2013. Dose enhancement due to injection of 79Au, 64Ga, 26Fe and 22Ti nanoparticles into tumor during HDR-192Ir brachytherapy treatment: Monte carlo study. J Cancer Res Treat. 11:752–759.
  • Zhang L, Dong W-F, Sun H-B. 2013. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale. 5:7664–7684.
  • Zhang X-D, Wu D, Shen X, Chen J, Sun Y-M, Liu P-X, Liang X-J. 2012. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 33:6408–6419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.