231
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Exposure to radiation from single or combined radio frequencies provokes macrophage dysfunction in the RAW 264.7 cell line

, , , &
Pages 607-618 | Received 05 Oct 2017, Accepted 23 Mar 2018, Published online: 30 Apr 2018

References

  • Albina JE, Reichner JS. 1998. Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev. 17:39–53.
  • Bartsch H, Bartsch C, Seebald E, Deerberg F, Dietz K, Vollrath L, Mecke D. 2002. Chronic exposure to a GSM-like signal (mobile phone) does not stimulate the development of DMBA-induced mammary tumors in rats: results of three consecutive studies. Radiat Res. 157:183–190.
  • Ebru G, Kristina W, Donald KM, Stella MV. 2006. An in vitro study of the effects of exposure to a GSM signal in two human cell lines: monocytic U937 and neuroblastoma SK-N-SH. Cell Biol Int. 30:793–799.
  • Fritze K, Sommer C, Schmitz B, Mies G, Hossmann KA, Kiessling M, Wiessner C. 1997. Effect of global system for mobile communication (GSM) microwave exposure on blood-brain barrier permeability in rat. Acta Neuropathol. 94:465–470.
  • Gamaley I, Augsten K, Berg H. 1995. Electrostimulation of macrophage NADPH oxidase by modulated high-frequency electromagnetic fields. Bioelectrochem Bioenerg. 38:415–418.
  • Glushkova OV, Khrenov MO, Novoselova TV, Lunin SM, Parfenyuk SB, Alekseev SI, Fesenko EE, Novoselova EG. 2015. The role of the NF-κB, SAPK/JNK, and TLR4 signalling pathways in the responses of RAW 264.7 cells to extremely low-intensity microwaves. Int J Radiat Biol. 91:321–328.
  • Gottwald E, Sontag W, Lahni B, Weibezahn KF. 2007. Expression of HSP72 after ELF-EMF exposure in three cell lines. Bioelectromagnetics. 28:509–518.
  • Grunwald MS, Pires AS, Zanotto-Filho A, Gasparotto J, Gelain DP, Demartini DR, Schölern CM, de Bittencourt PI Jr, Moreira JC. 2014. The oxidation of HSP70 is associated with functional impairment and lack of stimulatory capacity. Cell Stress Chaperones. 19:913–925.
  • Guerriero F, Ricevuti G. 2016. Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases. Neural Regen Res. 11:1888–1895.
  • He GL, Liu Y, Li M, Chen CH, Gao P, Yu ZP, Yang XS. 2014. The amelioration of phagocytic ability in microglial cells by curcumin through the inhibition of EMF-induced pro-inflammatory responses. J Neuroinflammation. 11:49.
  • Heikkinen P, Kosma V-M, Hongisto T, Huuskonen H, Hyysalo P, Komulainen H, Kumlin T, Lahtinen T, Lang S, Puranen L, et al. 2001. Effects of mobile phone radiation on X-ray-induced tumorigenesis in mice. Radiat Res. 156:775–785.
  • Helga T, Waltraud N, Hamid MD. 2006. In vitro effects of GSM modulated radio frequency fields on human immune cells. Bioelectromagnetics. 27:188–196.
  • Hidisoglu E, Kantar Gok D, Er H, Akpinar D, Uysal F, Akkoyunlu G, Ozen S, Agar A, Yargicoglu P. 2016. 2100-MHz electromagnetic fields have different effects on visual evoked potentials and oxidant/antioxidant status depending on exposure duration. Brain Res. 1635:1–11.
  • Higashikubo R, Culbreth VO, Spitz DR, LaRegina MC, Pickard WF, Straube WL, Moros EG, Roti JL. 1999. Radiofrequency electromagnetic fields have no effect of the in vivo proliferation of the 9L brain tumor. Radiat Res. 152:665–671.
  • Hirose H, Sasaki A, Ishii N, Sekijima M, Iyama T, Nojima T, Ugawa Y. 2010. 1950 MHz IMT-2000 field does not activate microglial cells in vitro. Bioelectromagnetics. 31:104–112.
  • Hirvonen MR, Brüne B, Lapetina EG. 1996. Heat shock proteins and macrophage resistance to the toxic effects of nitric oxide. Biochem J. 315:845–849.
  • Hsin-Yi L, Yu-Jen L. 2011. In vitro effects of low frequency electromagnetic fields on osteoblast proliferation and maturation in an inflammatory environment. Bioelectromagnetics. 32:552–560.
  • Ignacio GO, Pablo GO, Francisco GC, Encarna C, Luis LM. 2011. Pulsed electromagnetic fields decrease proinflammatory cytokine secretion (IL-1β and TNF-α) on human fibroblast-like cell culture. Rheumatol Int. 31:1283–1289.
  • Ikeda K, Shinmura Y, Mizoe H, Yoshizawa H, Yoshida A, Kanao S, Sumitani H, Hasebe S, Motomura T, Yamakawa T, et al. 2003. No effects of extremely low frequency magnetic fields found on cytotoxic activities and cytokine production of human peripheral blood mononuclear cells in vitro. Bioelectromagnetics. 24:21–31.
  • Irmak MK, Fadillioğlu E, Güleç M, Erdoğan H, Yağmurca M, Akyol O. 2002. Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct. 20:279–283.
  • Johansson A, Forsgren S, Stenberg B, Wilén J, Kalezic N, Sandström M. 2008. No effect of mobile phone-like RF exposure on patients with atopic dermatitis. Bioelectromagnetics. 29:353–362.
  • Kang KA, Lee HC, Lee JJ, Hong MN, Park MJ, Lee YS, Choi HD, Kim N, Ko YG, Lee JS. 2014. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells. J Radiat Res. 55:265–276.
  • Karolina WP, Jolanta KZ, Eugeniusz R, Piotr T, Paulina C, Józef M. 2014. Influence of static and alternating magnetic fields on u937 cell viability. Folia Medica Cracoviensia. 4:21–33.
  • Kim HN, Han NK, Hong MN, Chi SG, Lee YS, Kim T, Pack JK, Choi HD, Kim N, Lee JS. 2012. Analysis of the cellular stress response in MCF10A cells exposed to combined radio frequency radiation. Jrr. 53:176–183.
  • Kolomytseva MP, Gapeev AB, Sadovnikov VB, Chemeris NK. 2002. Suppression of nonspecific resistance of the body under the effect of extremely high frequency electromagnetic radiation of low intensity. Biofizika. 47:71–77.
  • Korc I, Bidegain M, Martell M. 1995. Radicales libres: Bioquímica y sistemas antioxidantes Implicancia en la patología neonatal. Revista Medica Uruguay 11:121–135.
  • Koyama S, Narita E, Suzuki Y, Taki M, Shinohara N, Miyakoshi J. 2015. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. J Radiat Res. 56:30–36.
  • Lee HJ, Jin YB, Kim TH, Pack JK, Kim N, Choi HD, Lee JS, Lee YS. 2012. The effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on rat testicular function. Bioelectromagnetics. 33:356–364.
  • Lee HJ, Jin YB, Lee JS, Choi SY, Kim TH, Lee YS. 2011. Lymphoma development of simultaneously combined exposure to two radio frequency signals in AKR/J mice. Bioelectromagnetics. 32:485–492.
  • Lieke AG, Marleen HS, Jan JM, Cuppen H, Savelkoul BM, Lidy VK. 2015. Low-frequency electromagnetic field exposure enhances extracellular trap formation by human neutrophils through the NADPH pathway. J Innate Immun. 7:459–465.
  • Liling S, Xiaoxia W, Zhengping X, Guangdi C. 2017. RF-EMF exposure at 1800 MHz did not elicit DNA damage or abnormal cellular behaviors in different neurogenic cells. Bioelectromagnetics. 38:175–185.
  • Lin HY, Lin YJ. 2011. In vitro effects of low frequency electromagnetic fields on osteoblast proliferation and maturation in an inflammatory environment. Bioelectromagnetics. 32:552–560.
  • López-Furelos A, Leiro-Vidal JM, Salas-Sánchez AÁ, Ares-Pena FJ, López-Martín ME. 2016. Evidence of cellular stress and caspase-3 resulting from a combined two-frequency signal in the cerebrum and cerebellum of Sprague–Dawley rats. Oncotarget. 7:64674–64689.
  • López-Furelos A, Leiro-Vidal JM, Salas-Sánchez AA, Rodríguez-González JA, Ares-Pena FJ, López-Martín ME. 2016. Validación del protocolo experimental de radiación en la línea celular RAW 264.7 con frecuencias combinadas en cámara GTEM” XXXI Simposium Nacional de la Unión Científica Internacional de Radio-URSI.
  • López-Furelos A, Miñana-Maiques MM, Leiro JM, Rodríguez-González JA, Ares-Pena FJ, López-Martín E. 2012. An experimental multi-frequency system for studying dosimetry and acute effects on cell and nuclear morphology in rat tissues. Pier. 129:541–558.
  • Lu Y, He M, Zhang Y, Xu S, Zhang L, He Y, Chen C, Liu C, Pi H, Yu Z, et al. 2014. Differential pro-inflammatory responses of astrocytes and microglia involve STAT3 activation in response to 1800 MHz radio frequency fields. PLoS One. 9:108318.
  • Makar VR, Logani MK, Bhanushali A, Alekseev SI, Ziskin MC. 2006. Effect of cyclophosphamide and 61.22 GHz millimeter waves on T-cell, B-cell, and macrophage functions. Bioelectromagnetics. 27:458–466.
  • Maresuke N, Aya N, Tsuyoshi H, Hidetake M. 2016. Evaluation of cell viability, DNA single-strand breaks, and nitric oxide production in LPS-stimulated macrophage RAW264 exposed to a 50-Hz magnetic field. Int J Radiat Biol. 92:583–589.
  • Mayers CP, Habeshaw JA. 1973. Depression of phagocytosis: a non-thermal effect of microwave radiation as a potential hazard to health. Int J Radiat Biol. 24:449–461.
  • Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Ahmed R, Abegaonkar MP. 2015. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology. 51:158–165.
  • Meric A, Esmekaya Cigdem O, Nesrin S. 2011. 900 MHz pulse-modulated radiofrequency radiation induces oxidative stress on heart, lung, testis and liver tissues. Gpb. 30:84–89.
  • Misa Agustiño MJ, Leiro JM, Jorge Mora MT, Rodríguez-González JA, Jorge Barreiro FJ, Ares-Pena FJ, López-Martín E. 2012. Electromagnetic fields at 2.45 GHz trigger changes in heat shock proteins 90 and 70 without altering apoptotic activity in rat thyroid gland. Biol Open. 1:831–838.
  • Pérez-Bruzón RN, del Moral A, Pérez-Castejón C, Llorente M, Vera A, Azanza MJ. 2011. Validation of an original incubator set-up for the exposure of human astrocyte cells to X-band microwaves in a GTEM-chamber. Histol Histopathol. 26:1187–1196.
  • Petrini C, Dupuis ML, Polichetti A, Ramoni C, Vecchia P. 1997. Tumor necrosis factor a and interferon g production by human peripheral blood mononuclear cells exposed in vitro to sinusoidal 50 Hz magnetic fields. Bioelectrochem Bioenerg. 44:121–125.
  • REAL DECRETO 1066/2001 2001. Boletín Oficial de Estado.
  • Regueiro-González JR, López-Larrea C, González-Rodríguez S, Martínez-Naves E. 2011. Inmunología, Biología y patología del sistema inmunitario. 4a Ed.
  • Roberta RA, Mara AB, Giuseppe P, Silvia D, Mario G, Pier GP. 2006. Increased levels of inducible HSP70 in cells exposed to electromagnetic fields. Radiat Res. 165:95–104.
  • Sandrine S, Hiroshi M, Gilles R, Florence PD, Bernard B, Bernard V. 2008. Effect of GSM-900 and -1800 signals on the skin of hairless rats. III: expression of heat shock proteins. Int J Radiat Biol. 84:61–68.
  • San-Miguel A, Iglesias R, Alonso N, Calvo B, Martín-Gil FJ. 2006. Diagnóstico in vitro síntesis e implicaciones fisiológicas del óxido nítrico. Diagnóstico in Vitro. 4:76.
  • Saygin M, Caliskan S, Karahan N, Koyu A, Gumral N, Uguz A. 2011. Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicol Ind Health. 27:455–463.
  • Schmid & Partner Engineering AG 2009. Reference manual for the SEMCAD simulation plat-form for electromagnetic compatibility, antenna design and dosimetry. http://www.semcad.com.
  • Seaman RL, Parker JE, Kiel JL, Mathur SP, Grubbs TR, Prol HK. 2002. Ultra-wideband pulses increase nitric oxide production by RAW 264.7 macrophages incubated in nitrate. Bioelectromagnetics. 23:83–87.
  • Simkó M, Hartwig C, Lantow M, Lupke M, Mattsson MO, Rollwitz J. 2006. HSP70 expression and free radical release after exposure to non-thermal radio-frequency electromagnetic fields and ultrafine particles in human Mono Mac 6 cells. Toxicol Lett. 161:73–82.
  • Stagg RB, Thomas WJ, Jones RA, Adey WR. 1997. DNA synthesis and cell proliferation in C6 glioma and primary glial cells exposed to a 836.55 MHz modulated radio frequency field. Bioelectromagnetics. 18:230–236.
  • Tavaria M, Gabriele T, Kola I, Anderson LR. 1996. A hitchhiker's guide to the human HSP70 family. Cell Stress Chaper. 1:23–28.
  • Thomas S, Kauhnlein A, Heinrich S, Praml G, Nowak D, Radon K. 2008a. Personal exposure to mobile phone frequencies and well-being in adults: a cross-sectional study based on dosimetry. Bioelectromagnetics. 29:463–470.
  • Thomas S, Kauhnlein A, Heinrich S, Praml G, Nowak D, Radon K. 2008b. Exposure to mobil telecommunication networks assessed using personal dosimetry and well-being in children and adolescents: the German mobile study. Environ Health. 7:54.
  • Tomoyuki S, Norio I, Jianqing W, Satoru T, Mayumi, Osamu F. 2014. Multigenerational effects of whole body exposure to 2.14 GHz W-CDMA cellular phone signals on brain function in rats. Bioelectromagnetics. 35:497–511.
  • Wang J, Koyama S, Komatsubara Y, Suzuki Y, Taki M, Miyakoshi J. 2006. Effects of a 2450 MHz high-frequency electromagnetic field with a wide range of SARs on the induction of heat-shock proteins in A172 cells. Bioelectromagnetics. 27:479–486.
  • Yang X, He G, Hao Y, Chen C, Li M, Wang Y, Zhang G, Yu Z. 2010. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells. J Neuroinflammation. 7:54.
  • Yariktas M, Doner F, Ozguner F, Gokalp O, Dogru H, Delibas N. 2005. Nitric oxide level in the nasal and sinus mucosa after exposure to electromagnetic field. Otolaryngol Head Neck Surg. 132:713–716.
  • Zafra C, Peña J, de la Fuente M. 1988. Effect of microwaves on the activity of murine macrophages in vitro. Int Arch Allergy Appl Immunol. 85:478–482.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.