441
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Radiation-induced genomic instability, epigenetic mechanisms and the mitochondria: a dysfunctional ménage a trois?

Pages 516-525 | Received 03 Sep 2018, Accepted 31 Oct 2018, Published online: 10 Dec 2018

References

  • Acharya MM, Baddour AAD, Kawashita T, Allen BD, Syage AR, Nguyen TH, Yoon N, Giedzinski YL, Parihar VK, Baulch JE. 2017. Epigenetic determinants of space radiation-induced cognitive dysfunction. Sci Rep. 21:42885.
  • Aykin-Burns N, Slane BG, Liu AT, Owens KM, O'Malley MS, Smith BJ, Domann FE, Spitz DR. 2011. Sensitivity to low-dose/low-LET ionizing radiation in mammalian cells harboring mutations in succinate dehydrogenase subunit C is governed by mitochondria-derived reactive oxygen species. Radiat Res. 175:150–158.
  • Aypar U, Morgan WF, Baulch JE. 2011. Radiation-induced genomic instability: are epigenetic mechanisms the missing link? Int J Radiat Biol. 87:179–191.
  • Azzam EI, Jay-Gerin JP, Pain D. 2012. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327:48–60.
  • Baulch JE, Aypar U, Waters KM, Yang AJ, Morgan WF. 2014. Genetic and epigenetic changes in chromosomally stable and unstable progeny of irradiated cells. PLoS One. 9:e107722.
  • Baylin SB, Jones PA. 2011. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 11:726–734.
  • Berson A, Nativio R, Berger SL, Bonini NM. 2018. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci. 41:587–598.
  • Bogenhagen D, Clayton DA. 1977. Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell. 11:719–727.
  • Boison D. 2013. Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev. 65:906–943.
  • Bulteau AL, Ikeda-Saito M, Szweda LI. 2003. Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry. 42:14846–14855.
  • Byun HM, Panni T, Motta V, Hou L, ordio F, Apostoli P, Bertazzi PA, Baccarelli AA. 2013. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol. 10:18.
  • Cerda S, Weitzman SA. 1997. Influence of oxygen radical injury on DNA methylation. Mutat Res. 386:141–152.
  • Chen B, Zhong Y, Peng W, Sun Y, Hu YJ, Yang Y, Kong WJ. 2011. Increased mitochondrial DNA damage and decreased base excision repair in the auditory cortex of D-galactose-induced aging rats. Mol Biol Rep. 38:3635–36642.
  • Chowdhury R, Yeoh KK, Tian Y-M, Hillringhaus L, Bagg EA, Rose NR, Leung IKH, Li XS, Woon ECY, Yang M, et al. 2011. The oncometabolite 2-hydroxygluterate inhibits histone lysine demethylases. EMBO Rep. 12:463–469.
  • Clutton SM, Townsend KM, Walker C, Ansell JD, Wright EG. 1996. Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis. 17:1633–1639.
  • Cyr AR, Hitchler MJ, Domann FE. 2013. Regulation of SOD2 in cancer by histone modifications and CpG methylation: closing the loop between redox biology and epigenetics. Antioxid Redox Signal. 18:1946–1955.
  • Dayal D, Martin SM, Limoli CL, Spitz DR. 2008. Hydrogen peroxide mediates the radiation-induced mutator phenotype in mammalian cells. Biochem J. 413:185–191.
  • Dayal D, Martin SM, Owens KM, Aykin-Burns N, Zhu Y, Boominathan A, Pain D, Limoli CL, Goswami PC, Domann FE, et al. 2009. Mitochondrial complex II dysfunction can contribute significantly to genomic instability after exposure to ionizing radiation. Radiat Res. 172:737–745.
  • de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. 2011. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 7:e1002384.
  • Devall M, Roubroeks J, Mill J, Weedon M, Lunnon K. 2016. Epigenetic regulation of mitochondrial function in neurodegenerative disease: new insights form advances in genomic technologies. Neurosci Lett. 625:47–55.
  • Droge W. 2002. Free radicals in the physiological control of cell function. Physiol Rev 82:47–95.
  • Fakouri NB, Hou Y, Demarest TG, Christiansen LS, Okur MN, Mohanty JG, Croteau DL, Bohr VA. 2018. Toward understanding genomic instability, mitochondrial dysfunction and aging. Febs J. doi: 10.1111/febs.14663. [Epub ahead of print].
  • Figueroa ME, Wahab OA, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF. 2010. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 18:553–567.
  • Grzybowska-Szatkowska L, Slaska B. 2012. Mitochondrial DNA and carcinogenesis (review). Mol Med Rep. 6:923–930.
  • Hitchler MJ, Domann FE. 2012. Redox regulation of the epigenetic landscape in cancer: a role for metabolic reprogramming in remodeling the epigenome. Free Radic Biol Med. 53:2178–2187.
  • Jirtle RL, Skinner MK. 2007. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 8:253–262.
  • Kadhim MA, Macdonald DA, Goodhead DT, Lorimore SA, Marsden SJ, Wright EG. 1992. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature. 355:738–740.
  • Kam WW, Banati RB. 2013. Effects of ionizing radiation on mitochondria. Free Radic Biol Med. 65:607–619.
  • Kigar SL, Chang L, Guerrero CR, Sehring JR, Cuarenta A, Parker LL, Bakshi VP, Auger AP. 2017. N(6)-methyladenine is an epigenetic marker of mammalian early life stress. Sci Rep. 7:18078.
  • Kim GJ, Fiskum GM, Morgan WF. 2006. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res. 66:10377–10383.
  • Lambertini L, Byun HM. 2016. Mitochondrial epigenetics and environmental exposure. Curr Environ Health Rep. 3:214–224.
  • Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB. 2001. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 61:3894–3901.
  • Lee J, Giordano S, Zhang J. 2012. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 441:523–540.
  • Limoli CL, Giedzinski E. 2003. Induction of chromosomal instability by chronic oxidative stress. Neoplasia. 5:339–346.
  • Limoli CL, Giedzinski E, Morgan WF, Swarts SG, Jones GD, Hyun W. 2003. Persistent oxidative stress in chromosomally unstable cells. Cancer Res. 63:3107–3111.
  • Limoli CL, Hartmann A, Shephard L, Yang CR, Boothman DA, Bartholomew J, Morgan WF. 1998. Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity. Cancer Res. 58:3712–3718.
  • Limoli CL, Kaplan MI, Phillips JW, Adair GM, Morgan WF. 1997. Differential induction of chromosomal instability by DNA strand-breaking agents. Cancer Res. 57:4048–4056.
  • Lorimore SA, Kadhim MA, Pocock DA, Papworth D, Stevens DL, Goodhead DT, Wright EG. 1998. Chromosomal instability in the descendants of unirradiated surviving cells after alpha-particle irradiation. Proc Natl Acad Sci U S A. 95:5730–5733.
  • Lund M, Melbye M, Diaz LJ, Duno M, Wohlfahrt J, Vissing J. 2015. Mitochondrial dysfunction and risk of cancer. Br J Cancer. 112:1134–1140.
  • MacPhee DG. 1998. Epigenetics and epimutagens: some new perspectives on cancer, germ line effects and endocrine disrupters. Mutat Res. 400:369–379.
  • Marder BA, Morgan WF. 1993. Delayed chromosomal instability induced by DNA damage. Mol Cell Biol. 13:6667–6677.
  • Matilainen O, Quiros PM, Auwerx J. 2017. Mitochondria and epigenetics - crosstalk in homeostasis and stress. Trends Cell Biol. 27:453–463.
  • Mechta M, Ingerslev LR, Fabre O, Picard M, Barres R. 2017. Evidence suggestion absence of mitochondrial DNA methylation. Front Genet. 8:166.
  • Merrifield M, Kovalchuk O. 2013. Epigenetics in radiation biology: a new research frontier. Front Genet. 4:40
  • Miousse IR, Chalbot MC, Lumen A, Ferguson A, Kavouras IG, Koturbash I. 2015. Response of transposable elements to environmental stressors. Mutat Res Rev Mutat Res. 765:19–39.
  • Miousse IR, Chang J, Shao L, Pathak R, Nzabarushimana E, Kutanzi KR, Landes RD, Tackett AJ, Hauer-Jensen M, Zhou D, et al. 2017. Inter-strain differences in LINE-1 DNA methylation in the mouse hematopoietic system in response to exposure to ionizing radiation. Int J Mol Sci 18: pii: E1430. doi: 10.3390/ijms18071430.
  • Miousse IR, Kutanzi KR, Koturbash I. 2017. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol. 93:457–469.
  • Miousse IR, Tobacyk J, Melnyk S, James SJ, Cheema AK, Boerma M, Hauer-Jensen M, Koturbash I. 2017. One-carbon metabolism and ionizing radiation: a multifaceted interaction. Biomol Concepts 8:83–92.
  • Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, Bolouri MS, Ray HN, Sihag S, Kamal M, et al. 2003. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 115:629–640.
  • Morgan WF. 2003. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res. 159:567–580.
  • Morgan WF. 2003. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res. 159:581–596.
  • Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL. 1996. Genomic instability induced by ionizing radiation. Radiat Res. 146:247–258.
  • Mothersill C, Seymour CB. 1998a. Cell-cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release during irradiation of a signal controlling survival into the medium. Radiat Res. 149:256–262.
  • Mothersill C, Seymour CB. 1998b. Mechanisms and implications of genomic instability and other delayed effects of ionizing radiation exposure. Mutagenesis. 13:421–426.
  • Murnane JP. 1996. Role of induced genetic instability in the mutagenic effects of chemicals and radiation. Mutat Res. 367:11–23.
  • Nohl H, Jordan W. 1986. The mitochondrial site of superoxide formation. Biochem Biophys Res Commun. 138:533–539.
  • Owens KM, Aykin-Burns N, Dayal D, Coleman MC, Domann FE, Spitz DR. 2012. Genomic instability induced by mutant succinate dehydrogenase subunit D (SDHD) is mediated by O2(-•) and H2O2. Free Radic Biol Med. 52:160–166.
  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et al. 2008. An integrated analysis of human gliomablastoforme. Science 321:1807–1812.
  • Pham TD, Wallace DC, Burke PJ. 2016. Microchambers with solid-state phosphorescent sensor for measuring single mitochondrial respiration. Sensors (Basel). 16: pii: E1065. doi: 10.3390/s16071065.
  • Pinney SE. 2014. Mammalian non-CpG methylation: stem cells and beyond. Biology (Basel). 3:739–751.
  • Reik W, Dean W, Walter J. 2001. Epigenetic reprogramming in mammalian development. Science. 293:1089–1093.
  • Rothbart SB, Strahl BD. 2014. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta. 1839:627–643.
  • Rountree MR, Bachman KE, Herman JG, Baylin SB. 2001. DNA methylation, chromatin inheritance, and cancer. Oncogene. 20:3156–3165.
  • Rugo RE, Mutamba JT, Mohan KN, Yee T, Chaillet JR, Greenberger JS, Engelward BP. 2011. Methyltransferases mediate cell memory of a genotoxic insult. Oncogene. 30:751–756.
  • Schulze A, Harris AL. 2012. How cancer metabolism is tunes for prolliferation and vulnerable to disruption. Nature. 49:364–373.
  • Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, et al. 2014. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect. 122:1271–1278.
  • Sherwani SI, Khan HA. 2015. Role of 5-hydroxymethylcytosine in neurodegeneration. Gene. 570:17–24.
  • Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM. 2011. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mamalian mitochondria. Proc Natl Acad Sci U S A. 108:3630–3635.
  • Slack JM. 2002. Conrad Hal Waddington: the last Renaissance biologist? Nat Rev Genet. 3:889–895.
  • Spitz DR, Azzam EI, Li JJ, Gius D. 2004. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev. 23:311–322.
  • Spitz DR, Hauer-Jensen M. 2014. Ionizing radiation-induced responses: where free radical chemistry meets redox biology and medicine. Antioxid Redox Signal. 20:1407–1409.
  • Szumiel I. 2015. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria. Int J Radiat Biol. 91:1–12.
  • Szyf M. 2016. The elusive role of 5'-hydroxymethylcytosine. Epigenomics. 8:1539–1551.
  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 324:930–935.
  • Takasugi M, Yagi S, Hirabayashi K, Shiota K. 2010. DNA methylation status of nuclear-encoded mitochondrial genes underlies the tissue-dependent mitochondrial functions. BMC Genomics. 11:481.
  • Thomas SN, Waters KM, Morgan WF, Yang AJ, Baulch JE. 2012. Quantitative proteomic analysis of mitochondrial proteins reveals prosurvival mechanisms in the perpetuation of radiation-induced genomic instability. Free Radic Biol Med. 53:618–628.
  • Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, Thompson CB, Kaufman A, Guryanova O, Levine R, Heguy A, Viale A, Morris LG, Huse JT, Mellinghoff IK, Chan TA. 2012. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 483:479–483.
  • Waddington CH. 1957. The strategy of the genes; a discussion of some aspects of theoretical biology. London: Allen & Unwin.
  • Williams-Karnesky RL, Sandau US, Lusardi TA, Lytle NK, Farrell JM, Pritchard EM, Kaplan DL, Boison D. 2013. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest. 123:3552–3563.
  • Xiao C-L, Zhu S, He M, Chen D, Zhang Q, Chen Y, Yu G, Liu J, Xie S-Q, Luo F, et al. 2018. N6-Methyladenine DNA Modification in the Human Genome. Mol Cell. 71:306–318.
  • Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GH, et al. 2009. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 360:765–773.
  • Yao B, Cheng Y, Wang Z, Li Y, Chen L, Huang L, Zhang W, Chen D, Wu H, Tang B, et al. 2017. DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat Commun. 8:1122.
  • Zhang T, Cooper S, Brockdorff N. 2015. The interplay of histone modifications - writers that read. EMBO Rep. 16:1467–1481.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.