1,103
Views
24
CrossRef citations to date
0
Altmetric
Reviews

A historical reflection on our understanding of radiation-induced DNA double strand break repair in somatic mammalian cells; interfacing the past with the present

ORCID Icon & ORCID Icon
Pages 945-956 | Received 15 Oct 2018, Accepted 17 Dec 2018, Published online: 17 Jan 2019

References

  • Alsbeih MG, Fertil B, Badie C, Malaise EP. 1995. The beta component of human cell survival curves and its relationship with split-dose recovery. Int J Radiat Biol. 67:453–460.
  • Alt FW, Schwer B. 2018. DNA double-strand breaks as drivers of neural genomic change, function, and disease. DNA Repair (Amst). https://doi.org/10.1016/j.dnarep.2018.08.019
  • Aymard F, Bugler B, Schmidt CK, Guillou E, Caron P, Briois S, Iacovoni JS, Daburon V, Miller KM, Jackson SP, et al. 2014. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol. 21:366–374.
  • Bailey SM, Bedford JS. 2006. Studies on chromosome aberration induction: what can they tell us about DNA repair? DNA Repair (Amst). 5:1171–1181.
  • Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G. 2011. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol. 193:81–95.
  • Barazzuol L, Ju L, Jeggo PA. 2017. A coordinated DNA damage response promotes adult quiescent neural stem cell activation. PLoS Biol. 15:e2001264.
  • Barazzuol L, Rickett N, Ju L, Jeggo PA. 2015. Low levels of endogenous or X-ray-induced DNA double-strand breaks activate apoptosis in adult neural stem cells. J Cell Sci. 128:3597–3606.
  • Barendsen GW. 1982. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 8:1981–1997.
  • Barton O, Naumann SC, Diemer-Biehs R, Kunzel J, Steinlage M, Conrad S, Makharashvili N, Wang J, Feng L, Lopez BS, et al. 2014. Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1. J Cell Biol. 206:877–894.
  • Beamish H, Williams R, Chen P, Lavin MF. 1996. Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation. J Biol Chem. 271:20486–20493.
  • Bedford JS, Cornforth MN. 1987. Relationship between the recovery from sublethal X-ray damage and the rejoining of chromosome breaks in normal human fibroblasts. Radiat Res. 111:406–423.
  • Bender MA, Griggs HG, Bedford JS. 1974. Mechanisms of chromosomal aberration production. 3. Chemicals and ionizing radiation. Mutat Res. 23:197–212.
  • Bennardo N, Cheng A, Huang N, Stark JM. 2008. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 4:e1000110.
  • Biehs R, Steinlage M, Barton O, Juhasz S, Kunzel J, Spies J, Shibata A, Jeggo PA, Lobrich M. 2017. DNA double-strand break resection occurs during non-homologous end joining in G1 but is distinct from resection during homologous recombination. Mol Cell. 65:671–684.
  • Bright S, Kadhim M. 2018. The future impacts of non-targeted effects. Int J Radiat Biol. 94:727–736.
  • Burdak-Rothkamm S, Rothkamm K, McClelland K, Al Rashid ST, Prise KM. 2015. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells. Cancer Lett. 356:454–461.
  • Burdak-Rothkamm S, Rothkamm K, Prise KM. 2008. ATM acts downstream of ATR in the DNA damage response signaling of bystander cells. Cancer Res. 68:7059–7065.
  • Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, Kieffer-Kwon KR, Pekowska A, Zhang H, Rao SSP, et al. 2017. Genome organization drives chromosome fragility. Cell. 170:507–521.
  • Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MIR, O’Connor KW, Konstantinopoulos PA, Elledge SJ, Boulton SJ, et al. 2015. Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair. Nature. 518:258–262.
  • Ceccaldi R, Rondinelli B, D'Andrea AD. 2016. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26:52–64.
  • Chapman JR, Sossick AJ, Boulton SJ, Jackson SP. 2012. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J Cell Sci. 125:3529–3534.
  • Chen S, Zhao Y, Han W, Zhao G, Zhu L, Wang J, Bao L, Jiang E, Xu A, Hei TK, et al. 2008. Mitochondria-dependent signalling pathway are involved in the early process of radiation-induced bystander effects. Br J Cancer. 98:1839–1844.
  • Cornforth MN. 2001. Analyzing radiation-induced complex chromosome rearrangements by combinatorial painting. Radiat Res. 155:643–659.
  • Cornforth MN. 2006. Perspectives on the formation of radiation-induced exchange aberrations. DNA Repair (Amst). 5:1182–1191.
  • Cornforth MN, Bedford JS. 1983. X-ray-induced breakage and rejoining of human interphase chromosomes. Science. 222:1141–1143.
  • Cornforth MN, Bedford JS. 1985. On the nature of a defect in cells from individuals with ataxia-telangiectasia. Science. 227:1589–1591.
  • Cornforth MN, Bedford JS. 1987. A quantitative comparison of potentially lethal damage repair and the rejoining of interphase chromosome breaks in low passage normal human fibroblasts. Radiat Res. 111:385–405.
  • Cox R, Masson WK, Weichselbaum RR, Nove J, Little JB. 1981. The repair of potentially lethal damage in X-irradiated cultures of normal and ataxia telangiectasia human fibroblasts. Int J Radiat Biol Relat Stud Phys Chem Med. 39:357–365.
  • Di Leonardo A, Linke SP, Clarkin K, Wahl GM. 1994. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8:2540–2551.
  • Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkac J, Cook MA, Rosebrock AP, Munro M, Canny MD, et al. 2013. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell. 49:872–883.
  • Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. 2001. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 410:842–847.
  • Foray N, Priestley A, Alsbeih G, Badie C, Capulas EP, Arlett CF, Malaise EP. 1997. Hypersensitivity of ataxia telangiectasia fibroblasts to ionizing radiation is associated with a repair deficiency of DNA double-strand breaks. Int J Radiat Biol. 72:271–283.
  • Fousteri M, Mullenders LH. 2008. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res. 18:73–84.
  • Fowler JF. 1989. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 62:679–694.
  • Frank KM, Sharpless NE, Gao Y, Sekiguchi JM, Ferguson DO, Zhu C, Manis JP, Horner J, DePinho RA, Alt FW. 2000. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol Cell. 5:993–1002.
  • Fumagalli M, Rossiello F, Mondello C, d'Adda di Fagagna F. 2014. Stable cellular senescence is associated with persistent DDR activation. PLoS One. 9:e110969.
  • Ghezraoui H, Oliveira C, Becker JR, Bilham K, Moralli D, Anzilotti C, Fischer R, Deobagkar-Lele M, Sanchiz-Calvo M, Fueyo-Marcos E, et al. 2018. 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. Nature. 560:122–127.
  • Ghezraoui H, Piganeau M, Renouf B, Renaud JB, Sallmyr A, Ruis B, Oh S, Tomkinson AE, Hendrickson EA, Giovannangeli C, et al. 2014. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell. 55:829–842.
  • Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, Jeggo PA. 2008. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell. 31:167–177.
  • Group ST, Bentzen SM, Agrawal RK, Aird EG, Barrett JM, Barrett-Lee PJ, Bliss JM, Brown J, Dewar JA, Dobbs HJ, et al. 2008. The UK Standardisatin of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatmentof early breast cancer: a randomised trial. Lancet Oncol. 9:331–341.
  • Hei TK, Zhou H, Chai Y, Ponnaiya B, Ivanov VN. 2011. Radiation induced non-targeted response: mechanism and potential clinical implications. Curr Mol Pharmacol. 4:96–105.
  • Holliday R. 1977. Recombination and meiosis. Philos Trans R Soc Lond, B, Biol Sci. 277:359–370.
  • Holliday R. 2011. The recombination, repair and modification of DNA. DNA Repair (Amst). 10:993–999.
  • Houldsworth J, Lavin MF. 1980. Effect of ionizing radiation on DNA synthesis in ataxia telangiectasia cells. Nucleic Acids Res. 8:3709–3720.
  • Howard SM, Yanez DA, Stark JM. 2015. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet. 11:e1004943.
  • Iliakis G, Murmann T, Soni A. 2015. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: implications for the formation of chromosome translocations. Mutat Res Genet Toxicol Environ Mutagen. 793:166–175.
  • Ip SC, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC. 2008. Identification of Holliday junction resolvases from humans and yeast. Nature. 456:357–361.
  • Isono M, Niimi A, Oike T, Hagiwara Y, Sato H, Sekine R, Yoshida Y, Isobe SY, Obuse C, Nishi R, et al. 2017. BRCA1 directs the repair pathway to homologous recombination by promoting 53BP1 dephosphorylation. Cell Rep. 18:520–532.
  • Jain MR, Li M, Chen W, Liu T, de Toledo SM, Pandey BN, Li H, Rabin BM, Azzam EI. 2011. In vivo space radiation-induced non-targeted responses: late effects on molecular signaling in mitochondria. Curr Mol Pharmacol. 4:106–114.
  • Jeggo P, Lavin MF. 2009. Cellular radiosensitivity: how much better do we understand it? Int J Radiat Biol. 85:1061–1081.
  • Jeggo PA. 1990. Studies on mammalian mutants defective in rejoining double-strand breaks in DNA. Mutat Res. 239:1–16.
  • Jeggo PA, Taccioli GE, Jackson SP. 1995. Menage à trois: double strand break repair, V(D)J recombination and DNA-PK . Bioessays. 17:949–957.
  • Johmura Y, Shimada M, Misaki T, Naiki-Ito A, Miyoshi H, Motoyama N, Ohtani N, Hara E, Nakamura M, Morita A, et al. 2014. Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell. 55:73–84.
  • Johnson RD, Jasin M. 2000. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19:3398–3407.
  • Kakarougkas A, Downs JA, Jeggo PA. 2015. The PBAF chromatin remodeling complex represses transcription and promotes rapid repair at DNA double-strand breaks. Mol Cell Oncol. 2:e970072.
  • Kakarougkas A, Ismail A, Chambers AL, Riballo E, Herbert AD, Kunzel J, Lobrich M, Jeggo PA, Downs JA. 2014. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol Cell. 55:723–732.
  • Kakarougkas A, Ismail A, Katsuki Y, Freire R, Shibata A, Jeggo PA. 2013. Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection. Nucleic Acids Res. 41:10298–10311.
  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ. Jr. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 71:587–597.
  • Kim ST, Xu B, Kastan MB. 2002. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16:560–570.
  • Kruhlak M, Crouch EE, Orlov M, Montano C, Gorski SA, Nussenzweig A, Misteli T, Phair RD, Casellas R. 2007. The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature. 447:730–734.
  • Kuhne M, Riballo E, Rief N, Rothkamm K, Jeggo PA, Lobrich M. 2004. A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res. 64:500–508.
  • Lobrich M, Jeggo PA. 2005. The two edges of the ATM sword: co-operation between repair and checkpoint functions. Radiother Oncol. 76:112–118.
  • Lobrich M, Jeggo PA. 2007. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer. 7:861–869.
  • Lobrich M, Rydberg B, Cooper PK. 1995. Repair of x-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends. Proc Natl Acad Sci USA. 92:12050–12054.
  • Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA. 2010. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 9:662–669.
  • Lukas J, Lukas C, Bartek J. 2004. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst). 3:997–1007.
  • Malaise EP, Fertil B, Deschavanne PJ, Chavaudra N, Brock WA. 1987. Initial slope of radiation survival curves is characteristic of the origin of primary and established cultures of human tumor cells and fibroblasts. Radiat Res. 111:319–333.
  • Marnef A, Cohen S, Legube G. 2017. Transcription-coupled DNA double-strand break repair: active genes need special care. J Mol Biol. 429:1277–1288.
  • Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. 2015. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature. 518:254–257.
  • Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, et al. 2001. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 15:1067–1077.
  • Mirman Z, Lottersberger F, Takai H, Kibe T, Gong Y, Takai K, Bianchi A, Zimmermann M, Durocher D, de Lange T. 2018. 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polα-dependent fill-in . Nature. 560:112–116.
  • Mothersill C, Rusin A, Fernandez-Palomo C, Seymour C. 2018. History of bystander effects research 1905-present; what is in a name? Int J Radiat Biol. 94:696–707.
  • Nagasawa H, Huo L, Little JB. 2003. Increased bystander mutagenic effect in DNA double-strand break repair-deficient mammalian cells. Int J Radiat Biol. 79:35–41.
  • Nagasawa H, Little JB. 2002. Bystander effect for chromosomal aberrations induced in wild-type and repair deficient CHO cells by low fluences of alpha particles. Mutat Res. 508:121–129.
  • Nagasawa H, Wilson PF, Chen DJ, Thompson LH, Bedford JS, Little JB. 2008. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination. DNA Repair (Amst). 7:515–522.
  • Nakamura H. 2008. hTERT-immortalized cells useful for analyzing effects of low-dose-rate radiation on human cells. JRR. 49:9–15.
  • Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ, Ling AK, Olivieri M, Alvarez-Quilon A, Moatti N, Zimmermann M, et al. 2018. The shieldin complex mediates 53BP1-dependent DNA repair. Nature. 560:117–121.
  • Obe G, Pfeiffer P, Savage JR, Johannes C, Goedecke W, Jeppesen P, Natarajan AT, Martinez-Lopez W, Folle GA, et al. 2002. Chromosomal aberrations: formation, identification and distribution. Mutat Res. 504:17–36.
  • Ochs F, Somyajit K, Altmeyer M, Rask MB, Lukas J, Lukas C. 2016. 53BP1 fosters fidelity of homology-directed DNA repair. Nat Struct Mol Biol. 23:714–721.
  • Pai CC, Deegan RS, Subramanian L, Gal C, Sarkar S, Blaikley EJ, Walker C, Hulme L, Bernhard E, Codlin S, et al. 2014. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. Nat Commun. 5:4091.
  • Painter RB, Young BR. 1980. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci USA. 77:7315–7317.
  • Panier S, Durocher D. 2013. Push back to respond better: regulatory inhibition of the DNA double-strand break response. Nat Rev Mol Cell Biol. 14:661–672.
  • Paul K, Wang M, Mladenov E, Bencsik-Theilen A, Bednar T, Wu W, Arakawa H, Iliakis G. 2013. DNA ligases I and III cooperate in alternative non-homologous end-joining in vertebrates. PLoS One. 8:e5950.
  • Polo SE, Almouzni G. 2015. Chromatin dynamics after DNA damage: the legacy of the access-repair-restore model. DNA Repair (Amst). 36:114–121.
  • Price BD, D'Andrea AD. 2013. Chromatin remodeling at DNA double-strand breaks. Cell. 152:1344–1354.
  • Prise KM, Belyakov OV, Folkard M, Michael BD. 1998. Studies of bystander effects in human fibroblasts using a charged particle microbeam. Int J Radiat Biol. 74:793–798.
  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, et al. 2004. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell. 16:715–724.
  • Rothkamm K, Gunasekara K, Warda SA, Krempler A, Lobrich M. 2008. Radiation-induced HPRT mutations resulting from misrejoined DNA double-strand breaks. Radiat Res. 169:639–648.
  • Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, et al. 1995. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 268:1749–1753.
  • Seymour CB, Mothersill C. 1997. Delayed expression of lethal mutations and genomic instability in the progeny of human epithelial cells that survived in a bystander-killing environment. Radiat Oncol Investig. 5:106–110.
  • Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA. 2010. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell. 141:970–981.
  • Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, et al. 2011. Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J. 30:1079–1092.
  • Shibata A, Jeggo P, Lobrich M. 2018. The pendulum of the Ku-Ku clock. DNA Repair (Amst). https://doi.org/10.1016/j.dnarep.2018.08.020
  • Shiotani B, Zou L. 2009. Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell. 33:547–558.
  • Simsek D, Brunet E, Wong SY, Katyal S, Gao Y, McKinnon PJ, Lou J, Zhang L, Li J, Rebar EJ, et al. 2011. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet. 7:e1002080.
  • Sokolov MV, Smilenov LB, Hall EJ, Panyutin IG, Bonner WM, Sedelnikova OA. 2005. Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts. Oncogene. 24:7257–7265.
  • Soria G, Polo SE, Almouzni G. 2012. Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell. 46:722–734.
  • Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G, Misteli T. 2007. Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol. 9:675–682.
  • Steel GG. 1991. The ESTRO Breur lecture. Cellular sensitivity to low dose-rate irradiation focuses the problem of tumour radioresistance. Radiother Oncol. 20:71–83.
  • Steel GG, Deacon JM, Duchesne GM, Horwich A, Kelland LR, Peacock JH. 1987. The dose-rate effect in human tumour cells. Radiother Oncol. 9:299–310.
  • Stiff T, Reis C, Alderton GK, Woodbine L, O'Driscoll M, Jeggo PA. 2005. Nbs1 is required for ATR-dependent phosphorylation events. EMBO J. 24:199–208.
  • Tartier L, Gilchrist S, Burdak-Rothkamm S, Folkard M, Prise KM. 2007. Cytoplasmic irradiation induces mitochondrial-dependent 53BP1 protein relocalization in irradiated and bystander cells. Cancer Res. 67:5872–5879.
  • Taylor AM, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S, Bridges BA. 1975. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature. 258:427–429.
  • Thames HD. Jr. 1984. Effect-independent measures of tissue responses to fractionated irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 45:1–10.
  • Thames HD, Jr., Withers HR, Peters LJ, Fletcher GH. 1982. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys. 8:219–226.
  • Ui A, Nagaura Y, Yasui A. 2015. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair. Mol Cell. 58:468–482.
  • Wang R, Zhou T, Liu W, Zuo L. 2018. Molecular mechanism of bystander effects and related abscopal/cohort effects in cancer therapy. Oncotarget. 9:18637–18647.
  • Weichselbaum RR, Nove J, Little JB. 1978. Deficient recovery from potentially lethal radiation damage in ataxia telengiectasia and xeroderma pigmentosum. Nature. 271:261–262.
  • Weinert TA, Kiser GL, Hartwell LH. 1994. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8:652–665.
  • West SC, Blanco MG, Chan YW, Matos J, Sarbajna S, Wyatt HD. 2015. Resolution of Recombination intermediates: mechanisms and regulation. Cold Spring Harb Symp Quant Biol. 80:103–109.
  • Wilson JH, Berget PB, Pipas JM. 1982. Somatic cells efficiently join unrelated DNA segments end-to-end. Mol Cell Biol. 2:1258–1269.
  • Withers HR, Thames HD, Jr, Peters LJ. 1983. A new isoeffect curve for change in dose per fraction. Radiother Oncol. 1:187–191.
  • Woodbine L, Gennery AR, Jeggo PA. 2014. The clinical impact of deficiency in DNA non-homologous end-joining. DNA Repair (Amst). 16:84–96.
  • Yarnold J. 2019. Changes in radiotherapy fractionation-breast cancer. Br J Radiol. 92:20170849.
  • Yasuhara T, Kato R, Hagiwara Y, Shiotani B, Yamauchi M, Nakada S, Shibata A, Miyagawa K. 2018. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell. 175:558–570.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.