108
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

LET dependence on killing effect and mutagenicity in the model filamentous fungus Neurospora crassa

, , , , , & show all
Pages 1125-1133 | Received 28 Nov 2017, Accepted 07 Sep 2018, Published online: 11 Oct 2018

References

  • Abe T, Ryuto H, Fukunishi N. 2012. Ion beam radiation mutagenesis. In: Shu QY, Forster BP, Nakagawa H, editors. Plant mutation breeding and biotechnology. Vienna (Austria): Joint FAO/IAEA. p. 99–106.
  • Brenner DJ. 2008. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol. 18:234–239.
  • Ceccaldi R, Rondinelli B, D'Andrea AD. 2016. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26:52–64.
  • Cox R, Thacker J, Goodhead DT, Munson RJ. 1977. Mutation and inactivation of mammalian cells by various ionising radiations. Nature. 267:425–427.
  • Dadachova E, Casadevall A. 2008. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol. 11:525–531.
  • Davis BJ, Havener JM, Ramsden DA. 2008. End-bridging is required for pol mu to efficiently promote repair of noncomplementary ends by nonhomologous end joining. Nucleic Acids Res. 36:3085–3094.
  • Davis RH, de Serres FJ. 1970. Genetic and microbiological research techniques for Neurospora crassa. In: Methods in enzymology. Chapter 4. Elsevier; p. 79–143.
  • de Serres FJ, Kolmark HG. 1958. A direct method for determination of forward-mutation rates in Neurospora crassa. Nature. 182:1249–1250.
  • de Serres FJ, Overton LK, Sadler BM. 1992. X-Ray-Induced specific-locus mutations in the ad-3 region of two-component heterokaryons of Neurospora crassa.X. Heterozygous effects of multilocus deletion mutations of genotype ad-3A or ad-3B. Mutat Res. 267:105–124.
  • Deriano L, Roth DB. 2013. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet. 47:433–455.
  • Goodhead DT, Thacker J, Cox R. 1993. Weiss Lecture. Effects of radiations of different qualities on cells: molecular mechanisms of damage and repair. Int J Radiat Biol. 63:543–556.
  • Hada M, Georgakilas AG. 2008. Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res. 49:203–210.
  • Hall EJ, Giaccia AJ. 2006. Chapter 7: linear energy transfer and relative biologic effectiveness. In: Hall EJ, Giaccia AJ, editors. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins; p. 106–116.
  • Hase Y, Tanaka A, Baba T, Watanabe H. 2000. FRL1 is required for petal and sepal development in Arabidopsis. Plant J. 24:21–32.
  • Hase Y, Trung KH, Matsunaga T, Tanaka A. 2006. A mutation in the uvi4 gene promotes progression of endo-reduplication and confers increased tolerance towards ultraviolet B light. Plant J. 46:317–326.
  • Hatakeyama S, Ishii C, Inoue H. 1995. Identification and expression of the Neurospora crassa mei-3 gene which encodes a protein homologous to Rad51 of Saccharomyces cerevisiae. Mol Gen Genet. 249:439–446.
  • Hei TK, Chen DJ, Brenner DJ, Hall EJ. 1988. Mutation induction by charged particles of defined linear energy transfer. Carcinogenesis. 9:1233–1236.
  • Hirano T, Kazama Y, Ishii K, Ohbu S, Shirakawa Y, Abe T. 2015. Comprehensive identification of mutations induced by heavy-ion beam irradiation in Arabidopsis thaliana. Plant J. 82:93–104.
  • Hoeijmakers JHJ. 2001. Genome maintenance mechanisms for preventing cancer. Nature. 411:366–374.
  • Ichida H, Matsuyama T, Ryuto H, Hayashi Y, Fukunishi N, Abe T, Koba T. 2008. Molecular characterization of microbial mutations induced by ion beam irradiation. Mutat Res. 639:101–107.
  • Irelan J, Miao V, Selker EU. 1993. Small scale DNA preps for Neurospora crassa. Fungal Genetics. 40:40–42. Newsletter
  • Kato A, Inoue H. 2006. Growth defect and mutator phenotypes of RecQ-deficient Neurospora crassa mutants separately result from homologous recombination and nonhomologous end joining during repair of DNA double-strand breaks. Genetics. 172:113–125.
  • Kazama Y, Hirano T, Saito H, Liu Y, Ohbu S, Hayashi Y, Abe T. 2011. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana. BMC Plant Biol. 11:161.
  • Kazama Y, Ma LQ, Hirano T, Ohbu S, Shirakawa Y, Hatakeyama S, Tanaka S, Abe T. 2012. Rapid evaluation of effective linear energy transfer in heavy-ion mutagenesis of Arabidopsis thaliana. Plant Biotechnology. 29:441–445.
  • Kazama Y, Saito H, Yamamoto YY, Hayashi Y, Ichida H, Ryuto H, Fukunishi N, Abe T. 2008. LET-dependent effects of heavy-ion beam irradiation in Arabidopsis thaliana. Plant Biotechnol. 25:113–117.
  • Kazama Y, Ishii K, Hirano T, Wakana T, Yamada M, Ohbu S, Abe T. 2017. Different mutational function of low- and high-linear energy transfer heavy-ion irradiation demonstrated by whole-genome resequencing of Arabidopsis mutants. Plant J. 92:1020–1030.
  • Kiefer J. 1985. Cellular and subcellular effects of very heavy ions. Int J Radiat Biol Relat Stud Phys Chem Med. 48:873–892.
  • Kiefer J, Rase S, Schopfer F, Schneider E, Weber K, Kraft G. 1983. Heavy ion action on yeast cells: inhibition of ribosomal-RNA synthesis, loss of colony forming ability and induction of mutants. Adv Space Res. 3:115–125.
  • Kojic M, Kostrub CF, Buchman AR, Holloman WK. 2002. BRCA2 homolog required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis. Mol Cell. 10:683–691.
  • Kojic M, Yang HJ, Kostrub CF, Pavletich NP, Holloman WK. 2003. The BRCA2-interacting protein DSS1 is vital for DNA repair, recombination, and genome stability in Ustilago maydis. Mol Cell. 12:1043–1049.
  • Letavayova L, Markova E, Hermanska K, Vlckova V, Vlasakova D, Chovanec M, Brozmanova J. 2006. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae. DNA Repair (Amst). 5:602–610.
  • Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 79:181–211.
  • Ma LQ, Kazama Y, Inoue H, Abe T, Hatakeyama S, Tanaka S. 2013. The type of mutations induced by carbon-ion-beam irradiation of the filamentous fungus Neurospora crassa. Fungal Biol. 117:227–238.
  • Matuo Y, Izumi Y, Furusawa Y, Shimizu K. 2018. Biological effects of carbon ion beams with various LETs on budding yeast Saccharomyces cerevisiae. Mutat Res. 810:45–51.
  • Matuo Y, Nishijima S, Hase Y, Sakamoto A, Tanaka A, Shimizu K. 2006. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae. Mutat Res. 602:7–13.
  • McVey M, Lee SE. 2008. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. 24:529–538.
  • Mehnati P, Morimoto S, Yatagai F, Furusawa Y, Kobayashi Y, Wada S, Kanai T, Hanaoka F, Sasaki H. 2005. Exploration of “over kill effect” of high-LET Ar- and Fe-ions by evaluating the fraction of non-hit cell and interphase death. J Radiat Res. 46:343–350.
  • Nikjoo H, Khvostunov IK, Cucinotta FA. 2002. The response of tissue-equivalent proportional counters to heavy ions. Radiat Res. 157:435–445.
  • Nikjoo H, Uehara S, Wilson WE, Hoshi M, Goodhead DT. 1998. Track structure in radiation biology: theory and applications. Int J Radiat Biol. 73:355–364.
  • Ninomiya Y, Suzuki K, Ishii C, Inoue H. 2004. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA. 101:12248–12253.
  • Okayasu R. 2012. Repair of DNA damage induced by accelerated heavy ions-a mini review. Int J Cancer. 130:991–1000.
  • Rademacher SE, Borak TB, Zeitlin C, Heilbronn L, Miller J. 1998. Wall effects observed in tissue-equivalent proportional counters from 1.05 GeV/nucleon iron-56 particles. Radiat Res. 149:387–395.
  • Ryuto H, Fukunishi N, Hayashi Y, Ichida H, Abe T, Kase M, Yano Y. 2008. Heavy-ion beam irradiation facility for biological samples in RIKEN. Plant Biotechnol. 25:119–122.
  • Sankaranarayanan K, Nikjoo H. 2015. Genome-based, mechanism-driven computational modeling of risks of ionizing radiation: the next frontier in genetic risk estimation?. Mutat Res Rev Mutat Res. 764:1–15.
  • Shikazono N, Tanaka A, Kitayama S, Watanabe H, Tano S. 2002. LET dependence of lethality in Arabidopsis thaliana irradiated by heavy ions. Radiat Environ Biophys. 41:159–162.
  • Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T, Kawahigashi H, Kikuchi R, Handa H, et al. 2009. A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant J. 58:668–681.
  • Shitsukawa N, Ikari C, Shimada S, Kitagawa S, Sakamoto K, Saito H, Ryuto H, Fukunishi N, Abe T, Takumi S, et al. 2007. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst. 82:167–170.
  • Skarsgard LD. 1998. Radiobiology with heavy charged particles: a historical review. Phys Med. 14 Suppl 1:1–19.
  • Suzuki M, Kase Y, Kanai T, Yatagai F, Watanabe M. 1997. LET dependence of cell death and chromatin-break induction in normal human cells irradiated by neon-ion beams. Int J Radiat Biol. 72:497–503.
  • Suzuki M, Tsuruoka C, Kanai T, Kato T, Yatagai F, Watanabe M. 2003. Qualitative and quantitative difference in mutation induction between carbon- and neon-ion beams in normal human cells. Biol Sci Space. 17:302–306.
  • Tamaru H, Inoue H. 1989. Isolation and characterization of a Laccase-derepressed mutant of Neurospora crassa. J Bacteriol. 171:6288–6293.
  • Tanaka A, Shikazono N, Hase Y. 2010. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res. 51:223–233.
  • Tanaka A, Shikazono N, Yokota Y, Watanabe H, Tano S. 1997. Effects of heavy ions on the germination and survival of Arabidopsis thaliana. Int J Radiat Biol. 72:121–127.
  • Terato H, Tanaka R, Nakaarai Y, Nohara T, Doi Y, Iwai S, Hirayama R, Furusawa Y, Ide H. 2008. Quantitative analysis of isolated and clustered DNA damage induced by gamma-rays, carbon ion beams, and iron ion beams. J Radiat Res. 49:133–146.
  • Tsuruoka C, Suzuki M, Hande MP, Furusawa Y, Anzai K, Okayasu R. 2008. The difference in LET and ion species dependence for induction of initially measured and non-rejoined chromatin breaks in normal human fibroblasts. Radiat Res. 170:163–171.
  • Tsuruoka C, Suzuki M, Kanai T, Fujitaka K. 2005. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res. 163:494–500.
  • van Gent DC, Hoeijmakers JH, Kanaar R. 2001. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet. 2:196–206.
  • Yasui Y, Mori M, Aii J, Abe T, Matsumoto D, Sato S, Hayashi Y, Ohnishi O, Ota T. 2012. S-LOCUS EARLY FLOWERING 3 is exclusively present in the genomes of short-styled buckwheat plants that exhibit heteromorphic self-incompatibility. PLoS One. 7:e31264.
  • Yatagai F. 2004. Mutations induced by heavy charged particles. Biol Sci Space. 18:224–234.
  • Zhang Y, Jasin M. 2011. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol. 18:80–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.