258
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

50-Hz magnetic field impairs the expression of iron-related genes in the in vitro SOD1G93A model of amyotrophic lateral sclerosis

, , , , , , & show all
Pages 368-377 | Received 03 Sep 2018, Accepted 10 Nov 2018, Published online: 04 Jan 2019

References

  • Agrawal S, Fox J, Thyagarajan B, Fox JH. 2018. Brain mitochondrial iron accumulates in Huntington's disease, mediates mitochondrial dysfunction, and can be removed pharmacologically. Free Radic Biol Med. 120:317–329.
  • Akbarnejad Z, Eskandary H, Vergallo C, Nematollahi-Mahani SN, Dini L, Darvishzadeh-Mahani F, Ahmadi M. 2017. Effects of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) on glioblastoma cells (U87). Electromagn Biol Med. 36:238–247.
  • An T, Shi P, Duan W, Zhang S, Yuan P, Li Z, Wu D, Xu Z, Li C, Guo Y. 2014. Oxidative stress and autophagic alteration in brainstem of SOD1-G93A mouse model of ALS. Mol Neurobiol. 49:1435–1448.
  • Angelucci F, Oliviero A, Pilato F, Saturno E, Dileone M, Versace V, Musumeci G, Batocchi AP, Tonali PA, Di Lazzaro V. 2004. Transcranial magnetic stimulation and BDNF plasma levels in amyotrophic lateral sclerosis. Neuroreport. 15:717–720.
  • Azanza MJ, del Moral A. 1994. Cell membrane biochemistry and neurobiological approach to biomagnetism. Prog Neurobiol. 44:517–601.
  • Benassi B, Filomeni G, Montagna C, Merla C, Lopresto V, Pinto R, Marino C, Consales C. 2016. Extremely low frequency magnetic field (ELF-MF) exposure sensitizes SH-SY5Y cells to the pro-Parkinson's disease toxin MPP(+). Mol Neurobiol. 53:4247–4260.
  • Boggio PS, Ferrucci R, Mameli F, Martins D, Martins O, Vergari M, Tadini L, Scarpini E, Fregni F, Priori A. 2012. Prolonged visual memory enhancement after direct current stimulation in Alzheimer's disease. Brain Stimul. 5:223–230.
  • Capelli E, Torrisi F, Venturini L, Granato M, Fassina L, Lupo GFD, Ricevuti G. 2017. Low-frequency pulsed electromagnetic field is able to modulate miRNAs in an experimental cell model of Alzheimer's disease. J Healthc Eng. 2017:2530270.
  • Carmody S, Wu XL, Lin H, Blank M, Skopicki H, Goodman R. 2000. Cytoprotection by electromagnetic field-induced hsp70: a model for clinical application. J Cell Biochem. 79:453–459.
  • Carri MT, Battistoni A, Polizio F, Desideri A, Rotilio G. 1994. Impaired copper binding by the H46R mutant of human Cu, Zn superoxide dismutase, involved in amyotrophic lateral sclerosis. FEBS Lett. 356:314–316.
  • Carrì MT, Ferri A, Battistoni A, Famhy L, Gabbianelli R, Poccia F, Rotilio G. 1997. Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett. 414:365–368.
  • Carrì MT, Valle C, Bozzo F, Cozzolino M. 2015. Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS. Front Cell Neurosci. 9:41.
  • Chen G, Lu D, Chiang H, Leszczynski D, Xu Z. 2012. Using model organism Saccharomyces cerevisiae to evaluate the effects of ELF-MF and RF-EMF exposure on global gene expression. Bioelectromagnetics. 33:550–560.
  • Consales C, Merla C, Marino C, Benassi B. 2012. Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol. 2012:683897.
  • Consales C, Cirotti C, Filomeni G, Panatta M, Butera A, Merla C, Lopresto V, Pinto R, Marino C, Benassi B. 2018. Fifty-hertz magnetic field affects the epigenetic modulation of the miR-34b/c in neuronal cells. Mol Neurobiol. 55(7):5698–5714.
  • Danzeisen R, Achsel T, Bederke U, Cozzolino M, Crosio C, Ferri A, Frenzel M, Gralla EB, Huber L, Ludolph A. 2006. Superoxide dismutase 1 modulates expression of transferrin receptor. J Biol Inorg Chem. 11:489–498.
  • Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP. 1993. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science. 261:1047–1051.
  • Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Dileone M, Sabatelli M, Tonali PA. 2004. Motor cortex stimulation for amyotrophic lateral sclerosis. Time for a therapeutic trial? Clin Neurophysiol. 115:1479–1485.
  • Di Lazzaro V, Pilato F, Profice P, Ranieri F, Musumeci G, Florio L, Beghi E, Frisullo G, Capone F, Sabatelli M, et al. 2009. Motor cortex stimulation for ALS: a double blind placebo-controlled study. Neurosci Lett. 464:18–21.
  • Di Lazzaro V, Ranieri F, Capone F, Pilato F, Profice P, Pellegrino G, Musumeci G, Florio L, Dileone M. 2014. Motor cortex stimulation for ALS: open label extension study of a previous small trial. Brain Stimul. 7:143–144.
  • Di Lazzaro V, Pellegrino G, Ranieri F, Florio L, Musumeci G, Caulo M, Ferretti A, Capone F. 2017. Effects of repetitive TMS of the motor cortex on disease progression and on glutamate and GABA levels in ALS: a proof of principle study. Brain Stimul. 10:1003–1005.
  • Di Loreto S, Falone S, Caracciolo V, Sebastiani P, D'Alessandro A, Mirabilio A, Zimmitti V, Amicarelli F. 2009. Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol. 219:334–343.
  • Edenharter O, Clement J, Schneuwly S, Navarro JA. 2017. Overexpression of Drosophila frataxin triggers cell death in an iron-dependent manner. J Neurogenet. 31:189–202.
  • Erdal ME, Yılmaz SG, Gürgül S, Uzun C, Derici D, Erdal N. 2018. miRNA expression profile is altered differentially in the rat brain compared to blood after experimental exposure to 50 Hz and 1 mT electromagnetic field. Prog Biophys Mol Biol. 132:35–42.
  • Falone S, Marchesi N, Osera C, Fassina L, Comincini S, Amadio M, Pascale A. 2016. Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE(2) human neuroblastoma cells. Int J Radiat Biol. 92:281–286.
  • Falone S, Santini S, Jr, Cordone V, Cesare P, Bonfigli A, Grannonico M, Di Emidio G, Tatone C, Cacchio M, Amicarelli F. 2017. Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms. Sci Rep. 7:11470.
  • Fanelli C, Coppola S, Barone R, Colussi C, Gualandi G, Volpe P, Ghibelli L. 1999. Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J. 13:95–102.
  • Fassina L, Saino E, Visai L, Schelfhout J, Dierick M, Van Hoorebeke L, Dubruel P, Benazzo F, Magenes G, Van Vlierberghe S. 2012. Electromagnetic stimulation to optimize the bone regeneration capacity of gelatin-based cryogels. Int J Immunopathol Pharmacol. 25:165–174.
  • Fregni F, Pascual-Leone A. 2007. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 3:383–393.
  • Gabbianelli R, Ferri A, Rotilio G, Carrì MT. 2001. Aberrant copper chemistry as a major mediator of oxidative stress in a human cellular model of amyotrophic lateral sclerosis. J Neurochem. 73:1175–1180.
  • Gajowiak A, Styś A, Starzyński RR, Bednarz A, Lenartowicz M, Staroń R, Lipiński P. 2015. Mice overexpressing both non-mutated human SOD1 and mutated SOD1(G93A) genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis. Front Mol Neurosci. 8:82.
  • Giorgi G, Pirazzini C, Bacalini MG, Giuliani C, Garagnani P, Capri M, Bersani F, Del Re B. 2017. Assessing the combined effect of extremely low-frequency magnetic field exposure and oxidative stress on LINE-1 promoter methylation in human neural cells. Radiat Environ Biophys. 56:193–200.
  • Gobba F, Bargellini A, Bravo G, Scaringi M, Cauteruccio L, Borella P. 2009. Natural killer cell activity decreases in workers occupationally exposed to extremely low frequency magnetic fields exceeding 1 microT. Int J Immunopathol Pharmacol. 22:1059–1066.
  • Golko-Perez S, Amit T, Bar-Am O, Youdim MB, Weinreb O. 2017. A novel iron chelator-radical scavenger ameliorates motor dysfunction and improves life span and mitochondrial biogenesis in SOD1G93A ALS mice. Neurotox Res. 31:230–244.
  • Guerriero F, Ricevuti G. 2016. Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases. Neural Regen Res. 11:1888–1895.
  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX. 1994. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science. 264:1772–1775.
  • Hadzhieva M, Kirches E, Wilisch-Neumann A, Pachow D, Wallesch M, Schoenfeld P, Paege I, Vielhaber S, Petri S, Keilhoff G, et al. 2013. Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis. Neuroscience. 230:94–101.
  • Harden RN, Remble TA, Houle TT, Long JF, Markov MS, Gallizzi MA. 2007. Prospective, randomized, single-blind, sham treatment-controlled study of the safety and efficacy of an electromagnetic field device for the treatment of chronic low back pain: a pilot study. Pain Pract. 7:248–255.
  • Hensley K, Mhatre M, Mou S, Pye QN, Stewart C, West M, Williamson KS. 2006. On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal. 8:2075–2087.
  • Hug K, Röösli M. 2012. Therapeutic effects of whole-body devices applying pulsed electromagnetic fields (PEMF): a systematic literature review. Bioelectromagnetics. 33:95–105.
  • Huss A, Peters S, Vermeulen R. 2018. Occupational exposure to extremely low-frequency magnetic fields and the risk of ALS: a systematic review and meta-analysis. Bioelectromagnetics. 39:156–163.
  • Jalilian H, Teshnizi SH, Röösli M, Neghab M. 2017. Occupational exposure to extremely low frequency magnetic fields and risk of Alzheimer disease: a systematic review and meta-analysis. Neurotoxicology. 69:242–252.
  • Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, David S. 2009. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci. 29:610–619.
  • Kaur SJ, McKeown SR, Rashid S. 2016. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene. 577:109–118.
  • Lee HC, Hong M-N, Jung SH, Kim BC, Suh YJ, Ko Y-G, Lee Y-S, Lee B-Y, Cho Y-G, Myung S-H, et al. 2015. Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics. 36:506–516.
  • Lefaucheur JP, de Carvalho M. 2016. New insights into the clinical neurophysiological assessment of ALS. Neurophysiol Clin. 46:157.
  • Li SS, Zhang ZY, Yang CJ, Lian HY, Cai P. 2013. Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure. Mutat Res. 758:95–103.
  • Liebl MP, Windschmitt J, Besemer AS, Schäfer AK, Reber H, Behl C, Clement AM. 2015. Low-frequency magnetic fields do not aggravate disease in mouse models of Alzheimer's disease and amyotrophic lateral sclerosis. Sci Rep. 5:8585.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408.
  • Luo F, Hou T, Zhang Z, Xie Z, Wu X, Xu J. 2012. Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells. Orthopedics. 35:e526–e531.
  • Luukkonen J, Liimatainen A, Höytö A, Juutilainen J, Naarala J. 2011. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells. PLoS One. 6:e18021.
  • Marchesi N, Osera C, Fassina L, Amadio M, Angeletti F, Morini M, Magenes G, Venturini L, Biggiogera M, Ricevuti G, et al. 2014. Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields. J Cell Physiol. 229:1776–1786.
  • Marracino P, Migliorati M, Paffi A, Liberti M, Denzi A, d'Inzeo G, Apollonio F. 2012. Signal transduction on enzymes: the effect of electromagnetic field stimuli on superoxide dismutase (SOD). Conf Proc IEEE Eng Med Biol Soc.2012:5674–5677.
  • Mattsson MO, Simkó M. 2012. Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence. Toxicology. 301:1–12.
  • Osera C, Fassina L, Amadio M, Venturini L, Buoso E, Magenes G, Govoni S, Ricevuti G, Pascale A. 2011. Cytoprotective response induced by electromagnetic stimulation on SH-SY5Y human neuroblastoma cell line. Tissue Eng Part A. 17:2573–2582.
  • Osera C, Amadio M, Falone S, Fassina L, Magenes G, Amicarelli F, Ricevuti G, Govoni S, Pascale A. 2015. Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2O2 -induced ROS production by increasing MnSOD activity. Bioelectromagnetics. 36:219–232.
  • Oshiro S, Morioka MS, Kikuchi M. 2011. Dysregulation of iron metabolism in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Adv Pharmacol Sci. 2011:378278.
  • Palumbo R, Capasso D, Brescia F, Mita P, Sarti M, Bersani F, Scarfi MR. 2006. Effects on apoptosis and reactive oxygen species formation by Jurkat cells exposed to 50 Hz electromagnetic fields. Bioelectromagnetics. 27:159–162.
  • Panagopoulos DJ, Karabarbounis A, Margaritis LH. 2002. Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun. 298:95–102.
  • Pantopoulos K. 2004. Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci. 1012:1.
  • Patruno A, Ferrone A, Costantini E, Franceschelli S, Pesce M, Speranza L, Amerio P, D'Angelo C, Felaco M, Grilli A, et al. 2018. Extremely low-frequency electromagnetic fields accelerates wound healing modulating MMP-9 and inflammatory cytokines. Cell Prolif. 51:e12432.
  • Popović-Bijelić A, Mojović M, Stamenković S, Jovanović M, Selaković V, Andjus P, Bačić G. 2016. Iron-sulfur cluster damage by the superoxide radical in neural tissues of the SOD1(G93A) ALS rat model. Free Radic Biol Med. 96:313–322.
  • Poulletier de Gannes F, Ruffié G, Taxile M, Ladevèze E, Hurtier A, Haro E, Duleu S, Charlet de Sauvage R, Billaudel B, Geffard M, et al. 2009. Amyotrophic lateral sclerosis (ALS) and extremely-low frequency (ELF) magnetic fields: a study in the SOD-1 transgenic mouse model. Amyotroph Lateral Scler. 10:370–373.
  • Renton AE, Chiò A, Traynor BJ. 2014. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 17:17–23.
  • Ridding MC, Rothwell JC. 2007. Is there a future for therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci. 8:559–567.
  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX. 1993. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 362:59–62.
  • Saliev T, Mustapova Z, Kulsharova G, Bulanin D, Mikhalovsky S. 2014. Therapeutic potential of electromagnetic fields for tissue engineering and wound healing. Cell Prolif. 47:485–493.
  • Sandyk R. 1992. Successful treatment of multiple sclerosis with magnetic fields. Int J Neurosci. 66:237–250.
  • Sandyk R, Iacono RP. 1994. Multiple sclerosis: improvement of visuoperceptive functions by picoTesla range magnetic fields. Int J Neurosci. 74:177–189.
  • Santini MT, Rainaldi G, Indovina PL. 2009. Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int J Radiat Biol. 85:294–313.
  • Silva B, Faustino P. 2015. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta. 1852:1347–1359.
  • Sulpizio M, Falone S, Amicarelli F, Marchisio M, Di Giuseppe F, Eleuterio E, Di Ilio C, Angelucci S. 2011. Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells. J Cell Biochem. 112:3797–3806.
  • Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM. 2018. Iron and cancer. Annu Rev Nutr. 38:97–125.
  • Tsang CK, Liu Y, Thomas J, Zhang Y, Zheng XF. 2014. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat Commun. 5:3446.
  • Urnukhsaikhan E, Mishig-Ochir T, Kim SC, Park JK, Seo YK. 2017. Neuroprotective effect of low frequency-pulsed electromagnetic fields in ischemic stroke. Appl Biochem Biotechnol. 181:1360–1371.
  • van Zundert B, Brown RH. Jr. 2017. Silencing strategies for therapy of SOD1-mediated ALS. Neurosci Lett. 636:32–39.
  • Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Borea PA, Varani K. 2012. The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells. PLoS One. 7:e39317.
  • Vincenzi F, Ravani A, Pasquini S, Merighi S, Gessi S, Setti S, Cadossi R, Borea PA, Varani K. 2017. Pulsed electromagnetic field exposure reduces hypoxia and inflammation damage in neuron-like and microglial cells. J Cell Physiol. 232:1200–1208.
  • Wang Q, Zhang X, Chen S, Zhang X, Zhang S, Youdium M, Le W. 2011. Prevention of motor neuron degeneration by novel iron chelators in SOD1(G93A) transgenic mice of amyotrophic lateral sclerosis. Neurodegener Dis. 8:310–321.
  • Wang TH, Wang SY, Wang XD, Jiang HQ, Yang YQ, Wang Y, Cheng JL, Zhang CT, Liang WW, Feng HL. 2018. Fisetin exerts antioxidant and neuroprotective effects in multiple mutant hSOD1 models of amyotrophic lateral sclerosis by activating ERK. Neuroscience. 379:152–166.
  • Winter AN, Ross EK, Wilkins HM, Stankiewicz TR, Wallace T, Miller K, Linseman DA. 2017. An anthocyanin-enriched extract from strawberries delays disease onset and extends survival in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Nutr Neurosci. 9:1–13.
  • Zhou QM, Zhang JJ, Li S, Chen S, Le WD. 2017. n-butylidenephthalide treatment prolongs life span and attenuates motor neuron loss in SOD1G93A mouse model of amyotrophic lateral sclerosis. CNS Neurosci Ther. 23:375–385.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.