133
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Infrared spectroscopic demonstration of magnetic orientation in SH-SY5Y neuronal-like cells induced by static or 50 Hz magnetic fields

&
Pages 781-787 | Received 03 Apr 2018, Accepted 11 Jan 2019, Published online: 04 Feb 2019

References

  • Al-Haik MS, Hussaini MY. 2006. Molecular dynamics simulation of reorientation of polyethylene chains under a high magnetic field. Molecular Simulation. 32:601–608.
  • Anderson LE, Bailey WH, Blackman CF, Day NE, DelPizzo V, Guénel P, Hansson Mild K, Hatch E, Juutilainen J, Kheifets LI, et al. 2002. IARC Working Group on the evaluation of carcinogenic risks to humans: non-ionizing radiation, part 1, static and extremely low-frequency (ELF) electric and magnetic fields. IARC Monogr Eval Carcinog Risks Hum. 80:390.
  • Anwer A, Windle AH. 1993. Magnetic orientation and microstructure of main-chain thermotropic copolyesters. Polymer. 34:3347–3357.
  • Ayrapetyan SN, Markov MS. 2006. Bioelectromagnetics-current concepts. The Netherlands: Springer.
  • Becker L, Bannwarth M, Meisinger C, Hill K, Model K, Krimmer T, Casadio R, Truscott KN, Schulz GE, Pfanner N, et al. 2005. Preprotein translocase of the outer mitochondrial membrane: Reconstituted Tom 40 forms a characteristic TOM pore. J Mol Biol. 353:1011–1020.
  • Calabrò E. 2016. Competition between hydrogen bonding and protein aggregation in neuronal-like cells under exposure to 50 Hz magnetic field. Int J Radiat Biol. 92:395–403.
  • Calabrò E, Condello S, Currò M, Ferlazzo N, Caccamo D, Magazù S, Ientile R. 2012. Modulation of HSP response in SH-SY5Y cells following exposure to microwaves of a mobile phone. World J Biol Chem. 3:34–40.
  • Calabrò E, Condello S, Currò M, Ferlazzo N, Caccamo D, Magazù S, Ientile R. 2013a. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells. Bioelectromagnetics. 34:618–629.
  • Calabrò E, Condello S, Currò M, Ferlazzo N, Vecchio M, Caccamo D, Magazù S, Ientile R. 2013b. 50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells. Oxidat Med Cell Long. 2013. Article ID 414393.
  • Calabrò E, Condello S, Magazù S, Ientile R. 2011. Static and 50 Hz electromagnetic fields effects on human neuronal-like cells vibration bands in the mid-infrared region. JEMAA. 3:69–78.
  • Calabrò E, Magazù S. 2010. Monitoring electromagnetic field emitted by high frequencies home utilities. JEMAA. 2:571–579.
  • Calabrò E, Magazù S. 2013a. Demicellization of polyethylene oxide in water solution under static magnetic field exposure studied by FTIR spectroscopy. Adv Phys Chem. 2013. Article ID 485865.
  • Calabrò E, Magazù S. 2013b. Unfolding and aggregation of myoglobin can be induced by three hours exposure to mobile phone microwaves: a FTIR spectroscopy study. Spectroscopy Lett. 46:583–589.
  • Calabrò E, Magazù S. 2013c. On the hydrogen bond increasing in polyethylene oxide aqueous solution induced by exposure to electromagnetic fields. Phys Chem: An Indian J. 8:59–66.
  • Calabrò E, Magazù S. 2014a. Non-thermal effects of microwave oven heating on ground beef meat studied in the mid-infrared region by FTIR spectroscopy. Spectroscopy Lett. 47:649–656.
  • Calabrò E, Magazù S. 2014b. Unfolding-induced in haemoglobin by exposure to electromagnetic fields: a FTIR spectroscopy study. Orient J Chem. 30:31–35.
  • Calabrò E, Magazù S. 2015. Fourier –self –deconvolution analysis of β-sheet contents in the Amide I region of haemoglobin aqueous solutions under exposure to 900 MHz microwaves and bioprotective effectiveness of sugars and salt solutions. Spectroscopy Lett. 48:741–747.
  • Calabrò E, Magazù S. 2016. Parallel β-sheet vibration band increases with proteins dipole moment under exposure to 1765 MHz microwaves. Bioelectromagnetics. 37:99–107.
  • Calabrò E, Magazù S. 2017. The α-helix alignment of proteins in water solution towards a high frequency electromagnetic field: a FTIR spectroscopy study. Electr Biol Med. 36:279–288.
  • Calabrò E, Magazù S. 2018a. Direct spectroscopic evidence for competition between thermal molecular agitation and magnetic field in a tetrameric protein in aqueous solution. Phys Lett A. 382:1389–1394.
  • Calabrò E, Magazù S. 2018b. Resonant interaction between electromagnetic fields and proteins: a possible starting point for the treatment of cancer. Electromagn Biol Med. 37:155–168.
  • Calabrò E, Magazù S, Campo S. 2012. Microwave-induced increase of Amide I and Amide II vibration bands and modulating functions of sodium-chloride, sucrose and trehalose aqueous solutions: The case study of Haemoglobin. Res J Chem Environ. 16:59–67.
  • Christianen PCM, Shklyarevskiy IO, Boamfa MI, Maan JC. 2004. Alignment of molecular materials in high magnetic fields. Physica B. 346–347:255–261.
  • Chung SH, Kuyucak S. 2002. Recent advances in ion channel research. Biochim Biophys Acta. 1565:267–286.
  • Condello S, Calabrò E, Caccamo D, Currò M, Ferlazzo N, Satriano J, Magazù S, Ientile R. 2012. Protective effects of agmatine in rotenone-induced damage of human SH-SY5Y neuroblastoma cells: Fourier transform infrared spectroscopy analysis in a model of Parkinson’s disease. Amino Acids. 42:775–781.
  • Corry B, Hurst AC, Pal P, Nomura T, Rigby P, Martinac B. 2010. An improved open-channel structure of MscL determined from FRET confocal microscopy and simulation. J Gen Physiol. 136:483–494.
  • Dickson JS, Koohmaraie M. 1989. Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl Environm Microb 55:832–836.
  • Ding G-R, Wake K, Taki M, Miyakoshi J. 2001. Increase in hypoxanthine-guanine phosphoribosyl transferase gene mutations by exposure to electric field. Life Sci. 68: 1041–1046.
  • Falone S, Santini S, di Loreto S, Cordone V, Grannonico M, Cesare P, Cacchio M, Amicarelli F. 2016. Improved mitochondrial and methylglyoxal-related metabolisms support hyperproliferation induced by 50 Hz magnetic field in neuroblastoma cells. J Cell Physiol. 231:2014–2025.
  • Goodman EM, Sharpe PT, Greenebaum B, Marron MT. 1986. Pulsed magnetic fields alter the cell surface. FEBS Lett. 199:275–278.
  • Goodman R, Blank M, Lin H, Dai R, Khorkova O, Soo L, Weisbrot D, Henderson A. 1994. Increased levels of hsp70 transcripts induced when cells are exposed to low frequency electromagnetic fields. Bioelectroc Bioenerg. 33:115–120.
  • Hammiche A, German MJ, Hewitt R, Pollock HM, Martin FL. 2005. Monitoring cell cycle distributions in MCF-7 cells using near-field photothermal microspectroscopy. Biophys J. 88:3699–3706.
  • Hille B. 2001. Ion channels of excitable membranes. 3rd Ed. Sunderland (MA): Sinauer Associates.
  • Hol WGJ, Halie LM, Sander C. 1981. Dipoles of the alpha-helix and beta-sheet: their role in protein folding . Nature. 294:532–536.
  • [ICNIRP] International Commission on Non-Ionizing Radiation Protection. 1998. Guidelines for limiting exposure to time -varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 74:494–522.
  • [ICNIRP] International Commission on Non-Ionizing Radiation Protection. 2009. ICNIRP guidelines on limits of exposure to static magnetic fields. Health Phys. 96:504–514.
  • [ICNIRP] International Commission on Non-Ionizing Radiation Protection. 2010. ICNIRP guidelines for limiting exposure to time-varying electric and magnetic fields. Health Phys. 99:818–836.
  • [ICNIRP] International Commission on Non-Ionizing Radiation Protection. 2014. ICNIRP guidelines for limiting exposure to electric fields induced by movement of the human body in a static magnetic field and by time-varying magnetic fields below 1 Hz. Health Phys. 106:418–425.
  • Jajte J, Grzegorczyk J, Zmyślony M, Rajkowska E. 2002. Effect of 7mT static magnetic field, iron ions on rat lymphocytes: apoptosis, necrosis and free radical processes. Bioelectrochemistry. 57:107–111.
  • Kesari KK, Juutilainen J, Luukkonen J, Naarala J. 2016. Induction of micronuclei and superoxide production in neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic fields. J R Soc Interface. 13:20150995.
  • Lahijani MS, Sajadi K. 2004. Development of preincubated chicken eggs following exposure to 50 Hz electromagnetic fields with 1.33-7.32 mT flux densities. Indian J Exp Biol. 42:858–865.
  • Lai HC, Singh NP. 2010. Medical applications of electromagnetic fields. IOP Conf Ser: Earth Environ Sci. 10:012006.
  • Liu Z, Gandhi CS, Rees DC. 2009. Structure of a tetrameric MscL in an expanded intermediate state. Nature. 461:120–124.
  • Luukkonen J, Höytö A, Sokka M, Liimatainen A, Syväoja J, Juutilainen J, Naarala J. 2017. Modification of p21 level and cell cycle distribution by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Int J Radiat Biol. 93:240–248.
  • Luukkonen J, Liimatainen A, Juutilainen J, Naarala J. 2014. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Mutat Res. 760:33–41.
  • Ma Y, Poole K, Goyette J, Gaus K. 2017. Introducing membrane charge and membrane potential to T cell signaling. Front Immunol. 8:1513.
  • Magazù S, Calabrò E, Caccamo MT, Cannuli A. 2016. The shielding action of disaccharides for typical proteins in aqueous solution against static, 50 Hz and 1800 MHz frequencies electromagnetic fields. CCB. 10:57–64.
  • Magazù S, Calabrò E, Campo S. 2010. FTIR spectroscopy studies on the bioprotective effectiveness of trehalose on human hemoglobin aqueous solutions under 50 Hz electromagnetic field exposure. J Phys Chem B. 114:12144–12149.
  • Marron MT, Goodman EM, Sharpe PT, Greenebaum B. 1988. Low frequency electric and magnetic fields have different effects on the cell surface. FEBS Lett. 230:13–16.
  • Mashaghi A, Partovi-Azar P, Jadidi T, Nafari N, Maass P, Tabar MRR, Bonn M, Bakker HJ. 2012. Hydration strongly affects the molecular and electronic structure of membrane phospholipids. J Chem Phys. 136:114709.
  • Nordenson I, Hansson KM, Sandstrom M, Mattsson MO. 1992. Effect of low-frequency magnetic fields on the chromosomal level in human amniotic cells. In: B. Nordenand C. Ramel, editors. Interaction mechanisms of low-level electromagnetic fields in living systems—resonant phenomena. Oxford (UK): Oxford University Press; p. 240–250.
  • Pacini S, Gulisano M, Peruzzi B, Sgambati E, Gheri G, Bryk SG, Vannucchi S, Polli G, Ruggiero M. 2003. Effects of 0.2 T static magnetic field on human skin fibroblasts. Cancer Detect Prev. 27:327–332.
  • Parker FS. 1971. Applications of infrared spectroscopy in biochemistry, biology and medicine. New York: Plenum Press.
  • Pekker M, Shneider MN. 2015. The surface charge of a cell lipid membrane. J Phys Chem Biophys. 5:177.
  • Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B. 2002. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature. 418:942–948.
  • Pipkin JL, Hinson WG, Young JF, Rowland KL, Shaddock JG, Tolleson WH, Duffy PH, Casciano DA. 1999. Induction of stress proteins by electromagnetic fields in cultured HL-60 cells. Bioelectromagnetics. 20:347–357.
  • Simkó M, Kriehuber R, Lange S. 1998. Micronucleus formation in human amnion cells after exposure to 50Hz MF applied horizontally and vertically. Mutat Res. 418: 101–111.
  • Stuart B. 1997. Biological applications of infrared spectroscopy. Chichester: John Wiley and Sons.
  • Sukharev S, Durell SR, Guy HR. 2001. Structural models of the MscL gating mechanism. Biophys J. 81:917–936.
  • Szabo I, Zoratti M. 2014. Mitochondrial channels: ion fluxes and more. Physiol Rev. 94:519–608.
  • Villinger S, Briones R, Giller K, Zachariae U, Lange A, de Groot BL, Griesinger C, Becker S, Zweckstetter M. 2010. Functional dynamics in the voltage-dependent anion channel. Proc Natl Acad Sci U S A. 107:22546–22551.
  • Wada A. 1976. The alpha-helix as an electric macro-dipole. Adv Biophys. 9:l–63.
  • [WHO] World Health Organization. 1984. Extremely low frequency (ELF) fields. Environmental Health Criteria 35. Geneva (Switzerland): World Health Organization.
  • [WHO] World Health Organization. 1987. Magnetic fields. Environmental Health Criteria 69. Geneva (Switzerland): World Health Organization.
  • [WHO] World Health Organization. 2006. Static fields. Environmental Health Criteria 232. Geneva (Switzerland): World Health Organization.
  • Zhang QM, Tokiwa M, Doi T, Nakahara T, Chang P-W, Nakamura N, Hori M, Miyakoshi J, Yonei S. 2003. Strong static magnetic field and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli soxR. Int J Radiat Biol. 79:281–286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.