502
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Risks of cognitive detriments after low dose heavy ion and proton exposures

&
Pages 985-998 | Received 05 Mar 2019, Accepted 25 Apr 2019, Published online: 10 Jun 2019

References

  • Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, Bogomolov EA, Bongi M, Bonvicini V, Borisov S, Bottai S. 2013. Time dependence of the proton flux measured by PAMELA during the 2006 July–2009 December solar minimum. ApJ 765:91.
  • Al-Jahdari WS, Suzuki Y, Yukari Y, Hamada N. 2009. The radiobiological effectiveness of carbon-ion beams on growing neurons. Int J Radiat Biol. 85:70–79.
  • Allen A, Raber J, Chakraborti A, Sharma S, Fike JR. 2015. 56Fe irradiation alters spine density and dendritic complexity in the mouse hippocampus. Radiat Res. 184:586–594.
  • Alp M, Cucinotta FA. 2017. Track structure model of microscopic energy deposition by protons and heavy ions in segments of neuronal cell dendrites represented by cylinders or spheres. Life Sci Space Res (Amst). 13:27–38.
  • Alp M, Cucinotta FA. 2018. Biophysics model of heavy ion degradation of neuron morphology in mouse hippocampal granular cell layer neurons. Radiat Res. 189:312–315.
  • Alp M, Parihar VK, Limoli CL, Cucinotta FA. 2015. Irradiation of neurons with high-energy charged particles: an in silico modeling approach. PLoS Comput. Biol. 11:e1004428.
  • Amaral DG, Scharfman HE, Lavenex P. 2007. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res. 163:3–22.
  • Andres AL, Gong X, Di K, Bota DA. 2014. Low-doses of cisplatin injure hippocampal synapses: a mechanism for ‘chemo' brain? Exp Neurol. 255:137–144.
  • Archaya MM, Green KM, Allen BD, Najafi AR, Syage A, Minasyan H, Le MT, Kawashita T, Giedzinski E, Parihar VK, et al. 2016. Elimination of microglia improves cognitive function following cranial irradiation. Sci Rep. 6:31545.
  • Ascoli GA. 2006. Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nat Rev Neurosci. 7:318–324.
  • Badhwar GD, Cucinotta FA, O'Neill PM. 1994. An analysis of interplanetary space radiation exposure for various solar cycles. Radiat Res. 138:201–208.
  • Block ML, Zecca L, Hong JS. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanism. Nat Rev Neurosci. 8:57–69.
  • Britten RA, Davis LK, Jewell JS, Miller VD, Hadley MM, Sanford LD, Machida M, Lonart G. 2014. Exposure to mission relevant doses of 1 GeV/nucleon 56Fe particles leads to impairment of attentional set-shifting performance in socially mature rats. Radiat Res. 182:292–298.
  • Britten RA, Jewell JS, Duncan VD, Davis LK, Hadley MM, Wyrobek AJ. 2017. Spatial memory performance of socially mature Wistar rats is impaired after exposure to low (5cGy) doses of 1 GeV/n 48Ti particles. Radiat Res. 187:60–65.
  • Britten RA, Jewell JS, Duncan VD, Hadley MM, Macadat E, Musto AE, Tessa CL. 2018. Impaired attentional set-shifting performance after exposure to 5 cGy of 600 MeV/u 28Si particles. Radiat Res. 189:273–282.
  • Cacao E, Cucinotta FA. 2018. Modeling reveals the dependence of hippocampal neurogenesis radiosensitivity on age and strain of rats. Front Neurosci| Neurogen. 2018:00980.
  • Cacao E, Cucinotta FA. 2016. Modeling heavy-ion impairment of hippocampal neurogenesis after acute and fractionated irradiation. Radiat Res. 186:624–637.
  • Cacao E, Parihar VP, Limoli CL, Cucinotta FA. 2018. Stochastic modeling of radiation-induced dendritic damage on in silico mouse hippocampal neurons. Sci Rep. 8:5494.
  • Chakraborti A, Allen A, Allen B, Rosi S, Fike JR. 2012. Cranial irradiation alters dendritic spine density and morphology in the hippocampus. PLoS One. 7:e40844.
  • Chen H, Chan DC. 2009. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet. 18:169–176.
  • Cheng Z, Li YQ, Wong CS. 2016. Effects of aging on hippocampal neurogenesis after irradiation. Int J Radiat Oncol Biol Phys. 94:1181–1189.
  • Cherry JD, Liu B, Frost JL, Lemere CA, Williams JP, Olschowka JA, O’Banion MK. 2012. Galactic cosmic radiation leads to cognitive impairment and increased Aβ plaque accumulation in a mouse model of Alzheimer’s disease. PLoS One. 7:e53275.
  • Chien L, Chen WK, Liu ST, Chang CR, Kao MC, Chen KW, Chiu SC, Hsu ML, Hsiang IC, Chen YJ, Chen L. 2015. Low-dose ionizing radiation induces mitochondrial fusion and increases expression of mitochondrial complexes I and III in hippocampal neurons. Oncotarget. 6:30628–30639.
  • Conner KR, Payne VS, Forbes E, Robbins ME, Riddle DR. 2010. Effects of the AT1 receptor antagonist L-158,809 on microglia and neurogenesis after fractionated whole-brain irradiation. Radiat Res. 173:49–56.
  • Conrad CD, Ortiz JB, Judd JM. 2017. Chronic stress and hippocampal dendritic complexity: methodological and functional considerations. Physiol Behav. 178:66–81.
  • Cucinotta FA, Alp M, Sulzman FM, Wang M. 2014. Space radiation risks to the central nervous system. Life Sci Space Res. 2:54–69.
  • Cucinotta FA, Kim MH, Willingham V, George KA. 2008. Physical and biological organ dosimetry analysis for international space station astronauts. Radiat Res. 170:127–138.
  • Cucinotta FA, Nikjoo H, Goodhead DT. 2000. Model for radial dependence of frequency distributions for energy imparted in nanometer volumes from HZE particles. Radiat Res. 153:459–468.
  • Cucinotta FA, Alp M, Cacao E. 2019. Detriments in neuron morphology following heavy ion irradiation – what’s the target? Radiat Protect Dosim. 183:69–74.
  • Cummings AC, Stone EC, Heikkila BC, Lal N, Webber WR, Jóhannesson G, Moskalenko IV, Orlando E, Porter TA. 2016. Galactic cosmic rays in the local interstellar medium: Voyager 1 observations and model results. APJ 831:18.
  • Davis CM, DeCicco-Skinner KL, Roma PG, Hienz RD. 2014. Individual differences in attentional deficits and dopaminergic protein levels following exposure to proton radiation. Radiat Res. 181:258–271.
  • Devine MJ, Kittler JT. 2018. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci. 19:63–80.
  • Dickstein DL, Talty R, Breshahan E, Varghese M, Perry B, et al. 2018. Alterations in synaptic density and myelination in response to exposure to high-energy charged particles. J Comp Neurol 2018:1–11.
  • Fischer TD, Hylin MJ, Zhao J, Moore AN, Waxham MN, Dash PK. 2016. Altered mitochondrial dynamics and TBI pathophysiology. Front Sys Neurosci. 10:1–12.
  • Flippo KH, Strack S. 2017. Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci. 130:671–681.
  • Gao J, Wang L, Liu J, Xie F, Su B, Wang X. 2017. Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants 6:25.
  • George JS, Lave KA, Wiedenbeck ME, Binns WR, Cummings AC, Davis AJ, de Nolfo GA, Hink PL, Israel MH, Leske RA, et al. 2009. Elemental compositions and energy spectra of galactic cosmic rays during solar cycle 23. APJ. 698:1666–1681.
  • Greene-Schloesser D, Payne V, Peiffer AM, Hsu FC, Riddle DR, Zhao W, Chan MD, Metheny-Barlow L, Robins ME. 2014. The peroximal proliferator-activator receptor (PPAR) α agonit, fenofibrate, prevents fractionated whole-brain irradiation-induced cognitive impairment. Radiat Res. 181:33–44.
  • Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. 2012. Radiation-induced brain injury: a review. Front Oncol. 2:73.
  • Greene-Schloesser DM, Kooshki M, Payne V, D’Agostino RB, Jr Wheeler KT, Metheny-Barlow LJ, Robbins ME. 2014. Cellular response of the rat brain to single doses of 137Cs γ-rays does not predict its response to prolonged ‘biologically equivalent’ fractionated doses. Int J Radiat Biol. 90:790–798.
  • Greenwood SM, Mizielinska SM, Frenguelli BG, Harvey J, Connolly CN. 2007. Mitochondrial dysfunction and dendritic beading during neuronal toxicity. J Biol Chem. 282:26235–26244.
  • Haerich P, Eggers C, Pecaut MJ. 2012. Investigation of the effects of head irradiation with gamma rays and protons on startle and pre-pulse inhibition behavior in mice. Radiat Res. 177:685–692.
  • Haley GE, Yeiser L, Olsen RH, Davis MJ, Johnson LA, Raber J. 2013. Early effects of whole-body (56)Fe irradiation on hippocampal function in C57BL/6J mice. Radiat Res. 179:590–596.
  • Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T, Noda H, Fukami K, Sakaue-Sawano A, Miyawaki A. 2011. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse arent mouse brain. Nat Neurosci. 14:1481–1488.
  • Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, Ehresmann B, Rafkin S, Eigenbrode JL, Brinza DE, Weigle G, Böttcher S, Böhm E. et al. 2014. The radiation environment on the surface of Mars measured on the Mars science Laboratory's curiosity rover. Science 343:6169–6172.
  • Hwang SY, Jung JS, Kim TH, Lim SJ, Oh ES, Kim JY, Ji KA, Joe EH, Cho KH, Han IO. 2006. Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiol Dis. 21:457–467.
  • Iancu OD, Boutros SW, Olsen RHJ, Davis MJ, Stewart B, Eiwaz M, Marzulla T, Belknap J, Fallgren CM, Edmondson EF, et al. 2018. Space radiation alters genotype-phenotype correlations in fear learning and memory tests. Front Genet. 9:404.
  • ICRP, 2012. ICRP statement on tissue reactions/early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context. ICRP publication 118. Ann. ICRP 41:1–322.
  • Impey S, Jopson T, Pelz C, Tafessu A, Fareh F, Zuloaga D, Marzulla T, Riparip L-K, Stewart B, Rosi S, et al. 2016. Short- and long-term effects of 56Fe irradiation on cognition and hippocampal DNA methylation and gene expression. BMC Genomics. 17:825.
  • Impey S, Jopson T, Pelz C, Tafessu A, Fareh F, Zuloaga D, Marzulla T, Riparip L-K, Stewart B, Rosi S, et al. 2017. Bi-directional and shared epigenomic signatures following proton and 56Fe irradiation. Sci Rep. 7:10227.
  • Impey S, Pelz C, Tafessu A, Marzulla T, Turker M, Raber J. 2016. Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus. BMC Genomics 17:273.
  • Jenrow KA, Brown SL, Lapanowski K, Naei H, Kolozsvary A, Kim JH. 2013. Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive impairment. Radiat Res. 179:549–556.
  • Joseph JA, Hunt WA, Rabin BM, Dalton TK. 1992. Possible “accelerated striatal aging” induced by 56Fe heavy-particle irradiation: implications for manned space flights. Radiat Res. 130:88–93.
  • Kalm M, Lannering B, Bjork-Eriksson T, Blomgren K. 2009. Irradiation-induced loss of microglia in the young brain. J Neuroimmunol. 206:70–75.
  • Kempermann G, Wiskott L, Gage FH. 2004. Functional significance of adult neurogenesis. Curr Opin Neurobiol. 14:186–191.
  • Kempf SJ, Moertl S, Sepe S, von Toerne C, Hauck SM, Atkinson MJ, Mastroberardino PG, Tapio S, 2015. Low-dose ionizing radiation rapidly affects mitochondrial and synaptic signaling pathways in murine hippocampus and cortex. J Proteome Res. 14:2055–2064.
  • Kettenmann H, Kirchhoff F, Verkhratsky A. 2013. Microglia: new roles for the synaptic stripper. Neuron. 77:10–17.
  • Kim M-HY, Cucinotta FA, Nounu HN, Zeitlin C, Hassler DM, Rafkin SCR, Wimmer-Schweingruber RF, Ehresmann B, Brinza D E, Böttcher S, et al. 2014. Comparison of Martian surface ionizing radiation measurements from MSL-RAD with Badhwar-O’Neill 2011/HZETRN model calculations. J Geophys Res Planets. 119:1311–1321.
  • Kim MY, Rusek A, Cucinotta FA. 2015. Issues for simulation of galactic cosmic ray exposures for radiobiological research at ground-based accelerators. Front Oncol. 5:122.
  • Labbé K, Murley A, Nunnari J. 2014. Determinants and functions of mitochondrial behavior. Annu Rev Cell Dev Biol. 30:357–391.
  • Larkman AU. 1991. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J Comp Neurol. 306:332–343.
  • Li Z, Okamoto K-I, Hayashi Y, Sheng M. 2004. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 119:873–887.
  • Limoli CL, Giedzinski E, Baure J, Rola R, Fike JR. 2007. Redox changes induced in hippocampal precursor cells by heavy ion irradiation. Radiat Environ Biophys. 46:167–172.
  • Mattson MP, Gleichmann M, Cheng A. 2008. Mitochondria in neuroplasticity and neurological disorders. Neuron. 60:748–766.
  • Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K, Murakoshi H, Koizumi S, Moorhouse AJ, Yoshimura Y, Nabekura J. 2016. Microglia contact induces synapse formation in developing somatosensory cortex. Nature Commun. 7:12540.
  • Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. 2003. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 63:4021–4027.
  • Monje ML, Mizumatsu S, Fike JR, Palmer TD. 2002. Irradiation induces neural precursor-cell dysfunction. Nat Med. 8:955–962.
  • Moravan MJ, Olschowka JA, Williams JP, O'Banion MK. 2011. Cranial irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiat Res. 176:459–473.
  • [NCRP] National Council on Radiation Protection and Measurements. 2000. Recommendations of dose limits for low earth orbit. Bethesda MD. NCRP Report 132.
  • Oren-Suissa M, Gattegno T, Kravtsov V, Podbilewicz B. 2017. Extrinsic repair of injured dendrites as a paradigm for regeneration by fusion in Caenorhabditis elegans. Genetics. 206:215–230.
  • Pani G, Verslegers M, Quintens R, Samari N, de Saint Georges L, van Oostveldt P. 2016. Combined exposure to simulated microgravity and acute or chronic radiation reduces neuronal network integrity and survival. PLoS One. 11:e0155260.
  • Parihar VK, Allen BD, Caressi C, Kwok S, Chu E, Tran KK, Chmielewski NN, Giedzinski E, Acharya MM, Britten RA, et al. 2016. Cosmic radiation exposure and persistent cognitive dysfunction. Sci Rep. 6:34773.
  • Parihar VK, Allen B, Tran KK, Macaraeg TG, Chu EM, Kwok SF, Chmielewski NN, Craver BM, Baulch JE, Acharya MM, et al. 2015. What happens to your brain on the way to Mars? Sci Adv. 1:e1400256.
  • Parihar VK, Limoli CL. 2013. Cranial irradiation compromises neuronal architecture in the hippocampus. Proc Natl Acad Sci USA. 110:12822–12827.
  • Parihar VK, Pasha J, Tran KK, Craver BM, Achayra MM, Limoli CL. 2015. Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Struct Funct. 220:1161–1171.
  • Peebles CL, Yoo J, Thwin MT, Palop JJ, Noebels JL, Finkbeiner S. 2010. Arc regulates spine morphology and maintains network stability in vivo. Proc Natl Acad Sci USA. 107:18173–18178.
  • Perry VH, Nicoll JAR, Holmes C. 2010. Microglia in neurodegenerative disease. Nat Rev Neurol. 6:193–201.
  • Plante I, Cucinotta FA. 2008. Ionization and excitation cross sections for the interaction of HZE particles in liquid water and application to Monte-Carlo simulation of radiation tracks. New J Phys. 10:1–15.
  • Raber J, Allen AR, Rosi S, Sharma S, Dayger C, Davis MJ, Fike JR. 2013. Effects of whole body 56Fe radiation on contextual freezing and Arc-positive cells in the dentate gyrus. Behav Brain Res. 246:162–167.
  • Raber J, Allen AR, Sharma S, Allen B, Rosi S, Olsen RHJ, Davis MJ, Eiwaz M, Fike JR, Nelson GA. 2016. Effects of proton and combined Proton and (56)Fe Radiation on the Hippocampus. Radiat Res. 185:20–30.
  • Raber J, Marzulla T, Kronenberg A, Turker MS. 2015. 16Oxygen irradiation enhances cued fear memory in B6D2F1 mice. Life Sci Space Res. 7:61–65.
  • Raber J, Marzulla T, Stewart B, Kronenberg A, Turker MS. 2015. 28Silicon irradiation impairs contextual fear memory in B6D2F1 mice. Radiat Res. 186:708–712.
  • Raber J, Rudobeck E, Campbell-Beachler M, Allen AR, Allen B, Rosi S, Nelson GA, Ramachandran S, Turner J, Fike JR, et al. 2014. 28Silicon radiation-induced enhancement of synaptic plasticity in the hippocampus of naïve and cognitively tested mice. Radiat Res. 181:362–368.
  • Raber J, Weber SJ, Kronenberg A, Turker MS. 2016. Sex- and dose-dependent effects of calcium ion irradiation on behavioral performance of B6D2F1 mice during contextual fear conditioning training. Life Sci Space Res. 9:56–61.
  • Rabin BM, Buhler LL, Joseph JA, Shukitt-Hale B, Jenkins DG. 2002. Effects of exposure to 56Fe particles or protons on fixed-ratio operant responding in rats. J Radiat Res. 43:S225–S228.
  • Rabin BM, Carrihill-Knoll KL, Shukitt-Hale B. 2011. Operant responding following exposure to HZE particles and its relationship to particle energy and linear energy transfer. Adv Space Res. 48:370–377.
  • Rabin BM, Carrihill-Knoll KL, Shukitt-Hale B. 2015. Comparison of the effectiveness of exposure to low-LET helium particles (4He) and gamma rays (137Cs) on the disruption of cognitive performance. Radiat Res. 184:266–272.
  • Rabin BM, Hunt WA, Joseph JA, Dalton TK, Kandasamy SB. 1991. Relationship between linear energy transfer and behavioral toxicity in rats following exposure to protons and heavy particles. Radiat Res. 128:216–221.
  • Rabin BM, Joseph JA, Shukitt-Hale B, McEwen J. 2000. Effects of exposure to heavy particles on a behavior mediated by the dopaminergic system. Adv Space Res. 25:2065–2074.
  • Rabin BM, Shukitt-Hale B, Joseph JA, Carrihill-Knoll KL, Carey AN, Cheng V. 2007. Relative effectiveness of different particles and energies in disrupting behavioral performance. Radiat Environ Biophys. 46:173–177.
  • Ramanan S, Kooshki M, Zhao W, Hsu FC, Riddle DR, Robbins ME. 2009. The PPARα agonist, fenofibrate, preserves hippocampal neurogenesis and inhibits microglial activation following whole brain irradiation. Int J Radiat Oncol Biol Phys. 75: 870–877.
  • Rice OV, Grande AV, Dehktyar N, Bruneus M, Robinson JK, Gatley SJ. 2009. Long-term effects of irradiation with iron-56 particles on the nigrostriatal dopamine system. Radiat Environ Biophys. 48:215–225.
  • Rice O, Saintvictor S, Michaelides M, Thanos P, Gatley SJ. 2006. MicroPET investigation of chronic long-term neurotoxicity from heavy ion irradiation. AAPS J. 8:E508–514.
  • Rintoul GL, Reynolds IJ. 2010. Mitochondrial trafficking and morphology in neuronal injury. Biochim Biophys Acta. 1802:143–150.
  • Riviera PD, Shih H, LeBlanc JA, Cole MG, Amaral AZ, Mukherjee S. 2014. Acute and fractionated exposure to high-let 56Fe HZE-particle radiation both result in similar long-term deficits in adult hippocampal neurogenesis. Radiat Res. 180:658–667.
  • Rola R, Fishman K, Baure J, Rosi S, Lamborn KR, Obenaus A, Nelson GA, Fike JR. 2008. Hippocampal neurogenesis and neuroinflammation after cranial irradiation with (56)Fe particles. Radiat Res. 169:626–632.
  • Rola R, Otsuka S, Obenaus A, Nelson GA, Limoli CL, VandenBerg SR, Fike JR. 2004. Indicators of hippocampal neurogenesis are altered by 56Fe-particle irradiation in a dose-dependent manner. Radiat Res. 162:442–446.
  • Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, Fike JR. 2004. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Expt Neurol. 188:316–330.
  • Rola R, Sarkissian V, Obenaus A, Nelson GA, Otsuka S, Limoli CL, Fike JR, et. al. 2005. High-LET radiation induces inflammation and persistent changes in markers of hippocampal neurogenesis. Radiat Res. 164:556–560.
  • Rosi S. 2011. Neuroinflammation and the plasticity-related immediate-early gene Arc. Brain Behav. Immun. 25: S39–S49.
  • Rosi S, Andres-Mach M, Fishman KM, Levy W, Ferguson RA, Fike JR. 2008. Cranial irradiation alters the behaviorally induced immediate-early gene Arc (activity-regulated cytoskeleton-associated protein). Cancer Res. 68:9763–9770.
  • Rudobeck E, Nelson GA, Sokolova IV, Vlkolinsky R. 2014. 28Si radiation impairs neuronal output in CA1 neurons of mouse ventral hippocampus without altering dendritic excitability. Radiat Res. 181:407–415.
  • Samorajski T. 1975. Late untrastructural changes in neuronal mitochondria after ionizing radiation of the brain. J Comp Neurol. 161:255–268.
  • Schindler MK, Forbes ME, Robbins ME, Riddle DR. 2008. Aging-dependent changes in the radiation response of the adult rat brain. Int J Radiat Oncol Biol Phys. 70:826–834.
  • Schnegg CI, Greene-Schloesser D, Kooshki M, Payne VS, Hsu FC, Robbins ME. 2013. The PPARδ agonist, GW0742, inhibits nuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation. Free Radic Biol Med. 61:1–9.
  • Shimura T, Sasatani M, Kawai H, Kamiya K, Kobayashi J, Komatsu K, Kunugita N, 2017. A comparison of radiation-induced mitochondrial damage between neural progenitor stem cells and differentiated cells. Cell Cycle. 16:565–573.
  • Sholl DA. 1953. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat. 87:387–406.
  • Shulz-Ertner D, Tsujii H. 2007. Particle radiation therapy using proton and heavier ion beams. JCO. 25:953–964.
  • Sivakumaran MH, Mackenzie AK, Callan IR, Ainge JA, O’Connor AR. 2018. The discrimination ratio derived from novel object recognition tasks as a measure of recognition memory sensitivity, not bias. Scientific Rep. 8:11579.
  • Son Y, Yang M, Kim JS, Kim J, Kim SH, Kim JC, Shin T, Wang H, Jo SK, Jung U, et al. 2014. Hippocampal dysfunction during the chronic phase following a single exposure to cranial irradiation. Exp Neurol. 254:134–144.
  • Sweet TB, Panda N, Hein AM, Das SL, Hurley SD, Olschowka JA, Williams JP, O'Banion MK. 2014. Central nervous system effects of whole-body proton irradiation. Radiat Res. 182:18–34.
  • Tada E, Parent JM, Lowenstein DH, Fike JR. 2000. X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience 99:33–41.
  • Tao J, Rolls MM. 2011. Dendrites have a rapid program of injury-induced degeneration that is molecularly distinct from developmental pruning. J Neurosci. 31:5398–5405.
  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. 1991. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 30:572–580.
  • Tofilon PJ, Fike JR. 2000. The radioresponse of the central nervous system: a dynamic process. Radiat Res. 153:357–370.
  • Valverde F. 1970. The Golgi method. A tool for comparative structural analyses. In: Nauta WJH, Ebbeson SOE, editors. Contemporary research methods in neuroanatomy. Berlin: Springer; p. 12–13.
  • Villasana L, Rosenberg J, Raber J. 2010. Sex-dependent effects of 56Fe irradiation on contextual fear conditioning in C57BL/6J mice. Hippocampus 20:19–23.
  • Wearne SL, Rodriguez A, Ehlenberger DB, Rocher AB, Henderson SC, Hof PR. 2005. New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience 136:661–680.
  • Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M, Vadisiute A, Raggioli A, Schertel A, et al. 2018. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nature Commun. 9:1228.
  • Williams DW, Truman JW. 2005. Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development 132:3631–3642.
  • Wong WT. 2013. Microglial aging in the healthy CNS: phenotypes, drivers and rejuvenation. Front Cellular Neurosci. 7:1–13.
  • Wyrobek AJ, Britten RA. 2016. Individual variations in dose response to spatial memory learning among outbred Wistar rats exposed from 5 to 20 cGy of 56Fe particles. Environ Mol Mutagen. 57:331–340.
  • Vyas A, Mitra R, Shankaranarayana R, Sumantra C. 2002. Chronic stress induced contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci. 22:6810–6818.
  • Zeitlin C, Hassler DM, Cucinotta FA, Ehresmann B, Wimmer-Schweingruber RF, Brinza DE, Kang S, Weigle G, Bottcher S, Bohm E, et al. 2013. Measurements of the energetic particle radiation environment in transit to Mars on the Mars Science laboratory. Science 340:1080–1084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.