180
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1400-1412 | Received 05 Apr 2020, Accepted 28 Aug 2020, Published online: 01 Oct 2020

References

  • Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, et al. 2016. Recent developments in Geant4. Nucl Instrum Meth A. 835:186–225.
  • Ando K, Koike S, Oohira C, Ogiu T, Yatagai F. 2005. Tumor induction in mice locally irradiated with carbon ions: a retrospective analysis. J Radiat Res. 46(2):185–190.
  • Bao C, Sun Y, Dong Y, Le Z, Lin L, Kong L, Lu J. 2018. The relative biological effectiveness of proton and carbon ion beams in photon-sensitive and resistant nasopharyngeal cancer cells. Transl Cancer Res. 7(1):170–179.
  • Barendsen GW. 1968. Responses of cultured cells, tumours and normal tissues to radiations of different linear energy transfer. Curr Top Radiat Res. 4:293–356.
  • Beauchesne P, Soler C, Boniol M, Schmitt T. 2003. Response to a phase II study of concomitant-to-sequential use of etoposide and radiation therapy in newly diagnosed malignant gliomas. Am J Clin Oncol. 26(3):e22–e27.
  • Belli M, Bettega D, Calzolari P, Cherubini R, Cuttone G, Durante M, Esposito G, Furusawa Y, Gerardi S, Gialanella G, et al. 2008. Effectiveness of monoenergetic and spread-out Bragg peak carbon-ions for inactivation of various normal and tumour human cell lines. J Radiat Res. 49(6):597–607.
  • Beuve M, Alphonse G, Maalouf M, Colliaux A, Battiston-Montagne P, Jalade P, Balanzat E, Demeyer A, Bajard M, Rodriguez-Lafrasse C. 2008. Radiobiologic parameters and local effect model predictions for head-and-neck squamous cell carcinomas exposed to high linear energy transfer ions. Int J Radiat Oncol Biol Phys. 71(2):635–642.
  • Choi J, Kang JO. 2012. Basics of particle therapy II: relative biological effectiveness. Radiat Oncol J. 30(1):1–13.
  • Cirrone G, Cuttone G, Lojacono PA, Lo Nigro S, Mongelli V, Patti IV, Privitera G, Raffaele L, Rifuggiato D, Sabini MG, et al. 2004. A 62-MeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud-INFN. IEEE Trans Nucl Sci. 51(3):860–865.
  • Cirrone GAP, Cuttone G, Raffaele L, Salamone V, Avitabile T, Privitera G, Spatola C, Amico AG, Larosa G, Leanza R, et al. 2017. Corrigendum: clinical and research activities at the CATANA facility of INFN-LNS: from the conventional hadrontherapy to the laser-driven approach. Front Oncol. 7:247.
  • Daşu A, Denekamp J. 2000. Inducible repair and intrinsic radiosensitivity: a complex but predictable relationship? Radiat Res. 153(3):279–288.
  • Durante M, Loeffler JS. 2010. Charged particles in radiation oncology. Nat Rev Clin Oncol. 7(1):37–43.
  • Durante M, Orecchia R, Loeffler J. 2017. Charged-particle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol. 14(8):483–495.
  • Fossati P, Matsufuji N, Kamada T, Karger CP. 2018. Radiobiological issues in prospective carbon ion therapy trials. Med Phys. 45(11):e1096–e1110.
  • Friedrich T, Durante M, Scholz M. 2013b. Particle species dependence of cell survival RBE: evident and not negligible. Acta Oncol. 52(3):589–603.
  • Friedrich T, Scholz U, Elsässer T, Durante M, Scholz M. 2013a. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J Radiat Res. 54(3):494–514.
  • Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, Yatagai F, Kanai T, Ando K. 2000. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams. Radiat Res. 154(5):485–496.2.0.CO;2]
  • Hamada N, Imaoka T, Masunaga S, Ogata T, Okayasu R, Takahashi A, Kato TA, Kobayashi Y, Ohnishi T, Ono K, et al. 2010. Recent advances in the biology of heavy-ion cancer therapy. J Radiat Res. 51(4):365–383.
  • Howard ME, Beltran C, Anderson S, Tseung WC, Sarkaria JN, Herman MG. 2018. Investigating dependencies of relative biological effectiveness for proton therapy in cancer cells. Int J Part Ther. 4(3):12–22.
  • [IAEA] International Atomic Energy Agency (IAEA). 2000. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Technical Reports Series No. 398. Vienna: IAEA.
  • Karger CP, Peschke P. 2017. RBE and related modeling in carbon-ion therapy. Phys Med Biol. 63(1):01TR02.
  • Keta O, Bulat T, Golić I, Incerti S, Korać A, Petrović I, Ristić Fira A. 2016. The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib. Cell Biol Toxicol. 32(2):83–101.
  • Koike S, Ando K, Uzawa A, Takai N, Fukawa T, Furusawa Y, Oohira C, Aoki M, Monobe M, Lee R, et al. 2002. Significance of fractionated irradiation for the biological therapeutic gain of carbon ions. Radiat Prot Dosimetry. 99(1–4):405–408.
  • Kraft G, Scholz M, Bechthold U. 1999. Tumor therapy and track structure. Radiat Environ Biophys. 38(4):229–237.
  • Krämer M, Kraft G. 1994. Calculations of heavy-ion track structure. Radiat Environ Biophys. 33(2):91–109.
  • Krämer M, Weyrather WK, Scholz M. 2003. The increased biological effectiveness of heavy charged particles: from radiobiology to treatment planning. Technol Cancer Res Treat. 2(5):427–436.
  • Lindblom E, Antonovic L, Dasu A, Lax I, Wersäll P, Toma-Dasu I. 2014. Treatment fractionation for stereotactic radiotherapy of lung tumours: a modelling study of the influence of chronic and acute hypoxia on tumour control probability. Radiat Oncol. 9:149.
  • Marples B, Joiner MC. 2000. Modification of survival by DNA repair modifiers: a probable explanation for the phenomenon of increased radioresistance. Int J Radiat Biol. 76(3):305–312.
  • Mohamad O, Sishc BJ, Saha J, Pompos A, Rahimi A, Story MD, Davis AJ, Kim DWN. 2017. Carbon ion radiotherapy: a review of clinical experiences and preclinical research. With an emphasis on DNA damage/repair. Cancers. 9:66.
  • Otani K, Naito Y, Sakaguchi Y, Seo Y, Takahashi Y, Kikuta J, Ogawa K, Ishii M. 2016. Cell-cycle-controlled radiation therapy was effective for treating a murine malignant melanoma cell line in vitro and in vivo. Sci Rep. 6:30689.
  • Paganetti H. 2014. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 59(22):R419–R472.
  • Paganetti H. 2015. Relating proton treatments to photon treatments via the relative biological effectiveness—should we revise current clinical practice? Int J Radiat Oncol Biol Phys. 91(5):892–894.
  • Petković V, Keta O, Vidosavljević M, Incerti S, Ristić Fira A, Petrović I. 2019. Biological outcomes of γ-radiation induced DNA damages in breast and lung cancer cells pretreated with free radical scavengers. Int J Radiat Biol. 95(3):274–285.
  • Petrović I, Ristić-Fira A, Todorović D, Korićanac L, Valastro L, Cirrone P, Cuttone G. 2010. Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak. Int J Radiat Biol. 86(9):742–751.
  • Petrović I, Ristić-Fira A, Todorović D, Valastro L, Cirrone P, Cuttone G. 2006. Radiobiological analysis of human melanoma cells on the 62 MeV CATANA proton beam. Int J Radiat Biol. 82(4):251–265.
  • Romano F, Cirrone GAP, Cuttone G, Di Rosa F, Mazzaglia SE, Petrovic I, Ristic Fira A, Varisano A. 2014. A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line. Phys Med Biol. 59:1–20.
  • Scholz M, Kraft G. 1994. Calculation of heavy ion inactivation probabilities based on track structure, X-ray sensitivity and target size. Radiat Prot Dosim. 52(1–4):29–33.
  • Scholz M, Kraft G. 1996. Track structure and the calculation of biological effects of heavy charged particles. Adv Space Res. 18(1–2):5–14.
  • Suit H, DeLaney T, Goldberg S, Paganetti H, Clasie B, Gerweck L, Niemierko A, Hall E, Flanz J, Hallman J, et al. 2010. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol. 95(1):3–22.
  • Suzuki M, Kase Y, Yamaguchi H, Kanai T, Ando K. 2000. Relative biological effectiveness for cell-killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams. Int J Radiat Oncol Biol Phys. 48(1):241–250.
  • Tsoulou E, Baggio L, Cherubini R, Kalfas CA. 2001. Low-dose hypersensitivity of V79 cells under exposure to gamma-rays and 4He ions of different energies: survival and chromosome aberrations. Int J Radiat Biol. 77(11):1133–1139.
  • Tsuchida E, Kaida A, Pratama E, Ikeda MA, Suzuki K, Harada K, Miura M. 2015. Effect of X-irradiation at different stages in the cell cycle on individual cell-based kinetics in an asynchronous cell population. PLoS One. 10(6):e0128090.
  • Weber U, Kraft G. 1999. Design and construction of a ripple filter for a smoothed depth dose distribution in conformal particle therapy. Phys Med Biol. 44(11):2765–2775.
  • Weber U, Kraft G. 2009. Comparison of carbon ions versus protons. Cancer J. 15(4):325–332.
  • Weyrather WK, Kraft G. 2004. RBE of carbon ions: experimental data and the strategy of RBE calculation for treatment planning. Radiother Oncol. 73:S161–S169.
  • Weyrather WK, Ritter S, Scholz M, Kraft G. 1999. RBE for carbon track-segment irradiation in cell lines of differing repair capacity. Int J Radiat Biol. 75(11):1357–1364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.