2,111
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Acute radiation syndrome-related gene expression in irradiated peripheral blood cell populations

, , , , , , , ORCID Icon, & show all
Pages 474-484 | Received 28 Sep 2020, Accepted 05 Jan 2021, Published online: 03 Mar 2021

References

  • Abend M, Badie C, Quintens R, Kriehuber R, Manning G, Macaeva E, Njima M, Oskamp D, Strunz S, Moertl S, et al. 2016. Examining radiation-induced in vivo and in vitro gene expression changes of the peripheral blood in different laboratories for biodosimetry purposes: first RENEB gene expression study. Radiat Res. 185(2):109–123.
  • Bogdándi EN, Balogh A, Felgyinszki N, Szatmári T, Persa E, Hildebrandt G, Sáfrány G, Lumniczky K. 2010. Effects of low-dose radiation on the immune system of mice after total-body irradiation. Radiat Res. 174(4):480–489.
  • Boldt S, Knops K, Kriehuber R, Wolkenhauer O. 2012. A frequency-based gene selection method to identify robust biomarkers for radiation dose prediction. Int J Radiat Biol. 88(3):267–276.
  • Chaudhry MA. 2008. Biomarkers for human radiation exposure. J Biomed Sci. 15(5):557–563.
  • Cho SJ, Kang H, Hong EH, Kim JY, Nam SY. 2018. Transcriptome analysis of low-dose ionizing radiation-impacted genes in CD4+ T-cells undergoing activation and regulation of their expression of select cytokines. J Immunotoxicol. 15(1):137–146.
  • El-Shanshoury H, El-Shanshoury G, Abaza A. 2016. Evaluation of low dose ionizing radiation effect on some blood components in animal model. J Radiat Res Appl Sci. 9(3):282–293.
  • Fujimori Y, Saheki K, Itoi H, Okamamoto T, Kakishita E. 2000. Increased expression of Fas (APO-1, CD95) on CD4+ and CD8+ T lymphocytes during total body irradiation. Acta Haematol. 104(4):193–196.
  • Goldhofer W, Kreienberg R, Kutzner J, Lemmel EM. 1979. Der Einfluss von Röntgenstrahlen auf die B- und T-Zellen in der Milz der Maus und deren Reaktivität auf Mitogene. Strahlentherapie. 155:277–283.
  • Gong W, Guo M, Han Z, Wang Y, Yang P, Xu C, Wang Q, Du L, Li Q, Zhao H, et al. 2016. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death Dis. 7(9):e2387.
  • Gridley DS, Slater JM, Luo-Owen X, Rizvi A, Chapes SK, Stodieck LS, Ferguson VL, Pecaut MJ. 2009. Spaceflight effects on T lymphocyte distribution, function and gene expression. J Appl Physiol. 106(1):194–202.
  • Kabacik S, Manning G, Raffy C, Bouffler S, Badie C. 2015. Time, dose and ataxia telangiectasia mutated (ATM) status dependency of coding and noncoding RNA expression after ionizing radiation exposure. Radiat Res. 183(3):325–337.
  • Kabanova S, Kleinbongard P, Volkmer J, Andrée B, Kelm M, Jax TW. 2009. Gene expression analysis of human red blood cells. Int J Med Sci. 6(4):156–159.
  • Liu J, Xue N, Guo Y, Niu K, Gao L, Zhang S, Gu H, Wang X, Zhao D, Fan R. 2019. CircRNA_100367 regulated the radiation sensitivity of esophageal squamous cell carcinomas through miR-217/Wnt3 pathway. Aging. 11(24):12412–12427.
  • Louagie H, Van Eijkeren M, Philippe J, Thierens H, De Ridder L. 1999. Changes in peripheral blood lymphocyte subsets in patients undergoing radiotherapy. Int J Radiat Biol. 75(6):767–771.
  • Macaeva E, Mysara M, De Vos WH, Baatout S, Quintens R. 2019. Gene expression-based biodosimetry for radiological incidents: assessment of dose and time after radiation exposure. Int J Radiat Biol. 95(1):64–75.
  • Majewski M, Nestler T, Kägler S, Richardsen I, Ruf CG, Matthies C, Willms A, Schmelz HU, Wagner W, Schwab R, et al. 2018. Liquid biopsy using whole blood from testis tumor and colon cancer patients-a new and simple way? Health Phys. 115(1):114–120.
  • Manning G, Kabacik S, Finnon P, Bouffler S, Badie C. 2013. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int J Radiat Biol. 89(7):512–522.
  • Mori M, Benotmane MA, Tirone I, Hooghe-Peters EL, Desaintes C. 2005. Transcriptional response to ionizing radiation in lymphocyte subsets. Cell Mol Life Sci. 62:1489–1501.
  • O’Brien G, Cruz-Garcia L, Majewski M, Grepl J, Abend M, Port M, Tichý A, Sirak I, Malkova A, Donovan E, et al. 2018. FDXR is a biomarker of radiation exposure in vivo. Sci Rep. 8(1):684.
  • Ostheim P, Coker O, Schüle S, Hermann C, Combs SE, Trott K-R, Atkinson M, Port M, Abend M. 2020. Identifying a diagnostic window for the use of gene expression profiling to predict acute radiation syndrome. Radiat Res. 195(1):38–46.
  • Paul S, Amundson SA. 2008. Development of gene expression signatures for practical radiation biodosimetry. Int J Radiat Oncol Biol Phys. 71(4):1236–1244.
  • Paul S, Smilenov LB, Amundson SA. 2013. Widespread decreased expression of immune function genes in human peripheral blood following radiation exposure. Radiat Res. 180(6):575–583.
  • Peslak SA, Wenger J, Bemis JC, Kingsley PD, Frame JM, Koniski AD, Chen Y, Williams JP, McGrath KE, Dertinger SD, et al. 2011. Sublethal radiation injury uncovers a functional transition during erythroid maturation. Exp Hematol. 39(4):434–445.
  • Pogosova-Agadjanyan EL, Georges FW, Schwartz GE, Kepler JL, Lee CM, Suchanek H, Cronk Mr AL, Brumbaugh A, Engel JH, et al. 2010. Identification of Radiation-Induced Expression Changes in Nonimmortalized Human T Cells. Radiat Res. 175(2):172–184.
  • Port M, Herodin F, Valente M, Drouet M, Lamkowski A, Majewski M, Abend M. 2016. First generation gene expression signature for early prediction of late occurring hematological acute radiation syndrome in baboons. Radiat Res. 186(1):39–54.
  • Port M, Herodin F, Valente M, Drouet M, Ullmann R, Doucha-Senf S, Lamkowski A, Majewski M, Abend M. 2016. MicroRNA expression for early prediction of late occurring hematologic acute radiation syndrome in baboons. PLoS One. 11(11):e0165307.
  • Port M, Hérodin F, Valente M, Drouet M, Ullmann R, Majewski M, Abend M. 2017. Pre-exposure gene expression in baboons with and without pancytopenia after radiation exposure. Int J Mol Sci. 18(3):541.
  • Port M, Majewski M, Abend M. 2019. Radiation dose is of limited clinical usefulness in persons with acute radiation syndrome. Radiat Prot Dosimetry. 186(1):126–129.
  • Port M, Majewski M, Herodin F, Valente M, Drouet M, Forcheron F, Tichy A, Sirak I, Zavrelova A, Malkova A, et al. 2018. Validating baboon ex vivo and in vivo radiation-related gene expression with corresponding human data. Radiat Res. 189(4):389–398.
  • Port M, Ostheim P, Majewski M, Voss T, Haupt J, Lamkowski A, Abend M. 2019. Rapid high-throughput diagnostic triage after a mass radiation exposure event using early gene expression changes. Radiat Res. 192(2):208–218.
  • Prosser JS. 1976. Survival of human t and b lymphocytes after x-irradiation. Int J Radiat Biol. 30(5):459–465.
  • Riecke A, Rufa CG, Cordes M, Hartmann J, Meineke V, Abend M. 2012. Gene expression comparisons performed for biodosimetry purposes on in vitro peripheral blood cellular subsets and irradiated individuals. Radiat Res. 178(3):234–243.
  • Schjeide OA, Schjeide S, Briles WE. 1983. Changes in expressions of red blood cell antigens following gamma irradiation of chicken embryos. Cytobios. 36(143–144):187–196.
  • Templin T, Amundson SA, Brenner DJ, Smilenov LB. 2011. Whole mouse blood microRNA as biomarkers for exposure to -rays and 56Fe ions. Int J Radiat Biol. 87(7):653–662.
  • Wasserman J, Blomgren H, Petrini B, Baral E, Strender LE, Jarstrand C, von Stedingk LV. 1982. Effect of radiation therapy and in vitro X-ray exposure on lymphocyte subpopulations and their functions. Am J Clin Oncol Cancer Clin Trials. 5(2):195–208.
  • Xu D, Peng M, Zhang Z, Dong G, Zhang Y, Yu H. 2012. Study of damage to red blood cells exposed to different doses of γ-ray irradiation. Blood Transfus. 10(3):321–330.