169
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Monte Carlo-based calculation of nano-scale dose enhancement factor and relative biological effectiveness in using different nanoparticles as a radiosensitizer

, , &
Pages 1289-1298 | Received 21 Jan 2021, Accepted 12 May 2021, Published online: 09 Jun 2021

References

  • Alqathami M, Blencowe A, Geso M, Ibbott G. 2016. Quantitative 3D determination of radiosensitization by bismuth-based nanoparticles. J Biomed Nanotechnol. 12(3):464–471.
  • Banoqitah E, Djouider F. 2016. Dose distribution and dose enhancement by using gadolinium nanoparticles implant in brain tumor in stereotactic brachytherapy. Radiat Phys Chem. 127:68–71.
  • Hossain M, Su M. 2012. Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy. J Phys Chem C. 116(43):23047–23052.
  • Hsiao Y, Stewart R. 2008. Monte Carlo simulation of DNA damage induction by X-rays and selected radioisotopes. Phys Med Biol. 53(1):233–244.
  • Huang P, Yang D-P, Zhang C, Lin J, He M, Bao L, Cui D. 2011. Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells. Nanoscale. 3(9):3623–3626.
  • Incerti S, Kyriakou I, Bernal MA, Bordage MC, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee SB, et al. 2018. Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA Project. Med Phys. 45(8):e722–e739.
  • Kakade NR, Sharma SD. 2015. Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. J Cancer Res Ther. 11(1):94–97.
  • Kawrakow I, Mainegra-Hing E, Rogers D, Tessier F, Walters B. 2017. The EGSnrc code system: Monte Carlo simulation of electron and photon transport. Technical report PIRS-701. Ottawa (ON): National Research Council of Canada.
  • Kyriakou I, Ivanchenko V, Sakata D, Bordage MC, Guatelli S, Incerti S, Emfietzoglou D. 2019. Influence of track structure and condensed history physics models of Geant4 to nanoscale electron transport in liquid water. Phys Med. 58:149–154.
  • Laurence M, Darmon A, Vivet S, Polrot M, Zhang P, Deutsch E, Bourhis J, Pottier A, Borghi E, Levy L. 2011. Abstract 2665: NBTXR3 hafnium oxide nanoparticle activated by ionizing radiation demonstrates marked radio-enhancement and antitumor effect via high energy deposit in human soft tissue sarcoma. Cancer Res. 71:2665–2665.
  • Lazarakis P, Incerti S, Ivanchenko V, Kyriakou I, Emfietzoglou D, Corde S, Rosenfeld AB, Lerch M, Tehei M, Guatelli S. 2018. Investigation of track structure and condensed history physics models for applications in radiation dosimetry on a micro and nano scale in Geant4. Biomed Phys Eng Express. 4(2):024001.
  • Leung MK, Chow JC, Chithrani BD, Lee MJ, Oms B, Jaffray DA. 2011. Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys. 38(2):624–631.
  • Li S, Porcel E, Remita H, Marco S, Refregiers M, Dutertre M, Confalonieri F, Lacombe S. 2017. Platinum nanoparticles: an exquisite tool to overcome radioresistance. Cancer Nanotechnol. 8(1):4.
  • Li WB, Belchior A, Beuve M, Chen YZ, Di Maria S, Friedland W, Gervais B, Heide B, Hocine N, Ipatov A, et al. 2020. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Phys Med. 69:147–163.
  • Lin Y, McMahon SJ, Scarpelli M, Paganetti H, Schuemann J. 2014. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Phys Med Biol. 59(24):7675–7689.
  • Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. 2018. Metal-based nanoenhancers for future radiotherapy: radiosensitizing and synergistic effects on tumor cells. Theranostics. 8(7):1824–1849.
  • Lu R, Yang D, Cui D, Wang Z, Guo L. 2012. Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int J Nanomedicine. 7:2101–2107.
  • Ma J, Xu R, Sun J, Zhao D, Tong J, Sun X. 2013. Nanoparticle surface and nanocore properties determine the effect on radiosensitivity of cancer cells upon ionizing radiation treatment. J Nanosci Nanotechnol. 13(2):1472–1475.
  • Maggiorella L, Barouch G, Devaux C, Pottier A, Deutsch E, Bourhis J, Borghi E, Levy L. 2012. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 8(9):1167–1181.
  • Mansouri E, Mesbahi A, Yazdani P. 2021. Analysis of physical dose enhancement in nano-scale for nanoparticle-based radiation therapy: a cluster and endothelial cell model. Nanomed J. 8(1):30–41.
  • Marill J, Anesary NM, Zhang P, Vivet S, Borghi E, Levy L, Pottier A. 2014. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect? Radiat Oncol. 9(1):150.
  • Mousavi M, Nedaei HA, Khoei S, Eynali S, Khoshgard K, Robatjazi M, Iraji Rad R. 2017. Enhancement of radiosensitivity of melanoma cells by pegylated gold nanoparticles under irradiation of megavoltage electrons. Int J Radiat Biol. 93(2):214–221.
  • Nikjoo H, Lindborg L. 2010. RBE of low energy electrons and photons. Phys Med Biol. 55(10):R65–R109.
  • Reniers B, Liu D, Rusch T, Verhaegen F. 2008. Calculation of relative biological effectiveness of a low-energy electronic brachytherapy source. Phys Med Biol. 53(24):7125–7135.
  • Sakata D, Incerti S, Bordage MC, Lampe N, Okada S, Emfietzoglou D, Kyriakou I, Murakami K, Sasaki T, Tran H, et al. 2016. An implementation of discrete electron transport models for gold in the Geant4 simulation toolkit. J Appl Phys. 120(24):244901.
  • Sakata D, Kyriakou I, Okada S, Tran HN, Lampe N, Guatelli S, Bordage MC, Ivanchenko V, Murakami K, Sasaki T, et al. 2018. Geant4-DNA track-structure simulations for gold nanoparticles: the importance of electron discrete models in nanometer volumes. Med Phys. 45(5):2230–2242.
  • Sakata D, Kyriakou I, Tran HN, Bordage MC, Rosenfeld AB, Ivanchenko V, Incerti S, Emfietzoglou D, Guatelli S. 2019. Electron track structure simulations in a gold nanoparticle using Geant4-DNA. Phys Med. 63:98–104.
  • Semenenko V, Stewart R. 2004. A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat Res. 161(4):451–457.
  • Semenenko V, Stewart R. 2006. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys Med Biol. 51(7):1693–1706.
  • Shamsabadi R, Baghani HR, Azadegan B, Mowlavi AA. 2020. Impact of spherical applicator diameter on relative biologic effectiveness of low energy IORT X-rays: a hybrid Monte Carlo study. Phys Med. 80:297–307.
  • Stewart C, Konstantinov K, McKinnon S, Guatelli S, Lerch M, Rosenfeld A, Tehei M, Corde S. 2016. First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Phys Med. 32(11):1444–1452.
  • Taha E, Djouider F, Banoqitah E. 2018. Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue. Australas Phys Eng Sci Med. 41(2):363–370.
  • Wang X, Zhong X, Cheng L. 2021. Titanium-based nanomaterials for cancer theranostics. Coord Chem Rev. 430:213662.
  • White SA, Reniers B, De Jong EE, Rusch T, Verhaegen F. 2016. A comparison of the relative biological effectiveness of low energy electronic brachytherapy sources in breast tissue: a Monte Carlo study. Phys Med Biol. 61(1):383–399.
  • Xu R, Ma J, Sun X, Chen Z, Jiang X, Guo Z, Huang L, Li Y, Wang M, Wang C, et al. 2009. Ag nanoparticles sensitize IR-induced killing of cancer cells. Cell Res. 19(8):1031–1034.
  • Zygmanski P, Sajo E. 2016. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays. Br J Radiol. 89(1059):20150200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.