707
Views
2
CrossRef citations to date
0
Altmetric
Mini-Review

COHERE – strengthening cooperation within the Canadian government on radiation research

ORCID Icon, , , , , , , & show all
Pages 1153-1165 | Received 30 Mar 2021, Accepted 03 Jun 2021, Published online: 06 Jul 2021

References

  • Allen CH, Kumar A, Qutob S, Nyiri B, Chauhan V, Murugkar S. 2018. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation. Phys Med Biol. 63(2):025002.
  • Andrievski A, Wilkins RC. 2009. The response of gamma-H2AX in human lymphocytes and lymphocytes subsets measured in whole blood cultures. Int J Radiat Biol. 85(4):369–376.
  • Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, et al. 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 29(3):730–741.
  • Ashmore JP, Krewski D, Zielinski JM, Jiang H, Semenciw R, Band PR. 1998. First analysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada. Am J Epidemiol. 148(6):564–574.
  • Ashmore PJ, Gentner NE, Osborne RV. 2010. Incomplete data on the Canadian cohort may have affected the results of the study by the International Agency for Research on Cancer on the radiogenic cancer risk among nuclear industry workers in 15 countries. J Radiol Prot. 30:121–29.
  • Atkins CG, Buckley K, Chen D, Schulze HG, Devine DV, Blades MW, Turner RF. 2016. Raman spectroscopy as a novel tool for monitoring biochemical changes and inter-donor variability in stored red blood cell units. Analyst. 141(11):3319–3327.
  • Atomic Energy Canada Limited (AECL). 2020. Federal nuclear science and technology work plan. [accessed]. https://www.aecl.ca/science-technology/federal-science-and-technology-work-plan/
  • Awadalla P, Boileau C, Payette Y, Idaghdour Y, Goulet JP, Knoppers B, Hamet P, Laberge C, Project CA, CARTaGENE Project. 2013. Cohort profile of the CARTaGENE study: Quebec's population-based biobank for public health and personalized genomics. Int J Epidemiol. 42(5):1285–1299.
  • Ayotte P, Levesque B, Gauvin D, McGregor RG, Martel R, Gingras S, Walker WB, Letourneau EG. 1998. Indoor exposure to 222Rn: a public health perspective. Health Phys. 75(3):297–302.
  • Bahia S, Blais E, Murugkar S, Chauhan V, Kumarathasan P. 2018. Oxidative and nitrative stress-related changes in human lens epithelial cells following exposure to X-rays. Int J Radiat Biol. 94(4):366–373.
  • Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA, Thiefin G, Sockalingum GD. 2016. Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev. 45(7):1803–1818.
  • Beaton LA, Ferrarotto C, Marro L, Samiee S, Malone S, Grimes S, Malone K, Wilkins RC. 2013. Chromosome damage and cell proliferation rates in in vitro irradiated whole blood as markers of late radiation toxicity after radiation therapy to the prostate. Int J Radiat Oncol Biol Phys. 85(5):1346–1352.
  • Beaton LA, Marro L, Malone S, Samiee S, Grimes S, Malone K, Wilkins RC. 2013. Investigating γ H2AX as a biomarker of radiosensitivity using flow cytometry methods. ISRN Radiol. 2013:704659.
  • Beaton LA, Marro L, Samiee S, Malone S, Grimes S, Malone K, Wilkins RC. 2013. Investigating chromosome damage using fluorescent in situ hybridization to identify biomarkers of radiosensitivity in prostate cancer patients. Int J Radiat Biol. 89(12):1087–1093.
  • Beaton-Green LA, Barr T, Ainsbury EA, Wilkins RC. 2016. Retrospective biodosimetry of an occupational overexposure-case study. Radiat Prot Dosimetry. 172(1–3):254–259.
  • Beaton-Green LA, Rodrigues MA, Lachapelle S, Wilkins RC. 2017. Foundations of identifying individual chromosomes by imaging flow cytometry with applications in radiation biodosimetry. Methods. 112:18–24.
  • Berger AJ, Koo TW, Itzkan I, Horowitz G, Feld MS. 1999. Multicomponent blood analysis by near-infrared Raman spectroscopy. Appl Opt. 38(13):2916–2926.
  • Bergholt MS, Hassing S. 2009. Quantification of C-reactive protein in human blood plasma using near-infrared Raman spectroscopy. Analyst. 134(10):2123–2127.
  • Bonifacio A, Cervo S, Sergo V. 2015. Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications. Anal Bioanal Chem. 407(27):8265–8277.
  • Brunner H, Sussner H. 1973. Resonance Raman scattering on haemoglobin. Biochim Biophys Acta. 310(1):20–31.
  • Brunner H. 1974. Identification of the iron-ligand vibration of oxyhemoglobin. Naturwissenschaften. 61(3):129–129.
  • Bundy K. 2012. Radiation effects of tritium. In: Meyers R, editor. Encyclopedia of sustainability science and technology. New York (NY): Springer Science.
  • Burtt J, Ilin M, Lane R, Thompson P, Phaneuf M, Reinhardt P. 2011. Use of a weight of evidence approach to determine the likelihood of adverse effects on human health from the presence of uranium facilities in Port Hope. JEP. 2(9):1149–1161.
  • Burtt JJ, Rickard M, McAllister A, Bergman L, Zablotska LB. 2020. Projecting thyroid cancer risk to the general public from radiation exposure following hypothetical severe nuclear accidents in Canada. J Radiol Prot. 40:1091–1110.
  • Burtt JJ, Thompson PA, Lafrenie RM. 2016. Non-targeted effects and radiation-induced carcinogenesis: a review. J Radiol Prot. 36(1):R23–R35.
  • Canadian Nuclear Safety Commission. 2010. Health effects, dosimetry and radiological protection of tritium. Part of the tritium studies project. INFO-0799.
  • Canadian Nuclear Safety Commission. 2020a. Canadian Organization on Health Effects from Radiation Exposure (COHERE) Researchgate project. [accessed]. https://www.researchgate.net/project/Federal-Organizations-for-Low-Dose-Radiation-Research-COHERE
  • Canadian Nuclear Safety Commission. 2020b. Canadian Organization on Health Effects from Radiation Exposure (COHERE) webpage. [accessed]. http://www.nuclearsafety.gc.ca/eng/resources/research/cohere/index.cfm
  • Canadian Nuclear Safety Commission. 2020c. Learning portal. [accessed]. http://www.nuclearsafety.gc.ca/eng/resources/learning-portal/index.cfm
  • Canadian Nuclear Safety Commission. 2020d. Research and support program. [accessed]. https://nuclearsafety.gc.ca/eng/resources/research/research-and-support-program/index.cfm
  • Cardis E, Gilbert ES, Carpenter L, Howe G, Kato I, Armstrong BK, Beral V, Cowper G, Douglas A, Fix J. 1995. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res. 142(2):117–132.
  • Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, Howe G, Kaldor J, Muirhead CR, Schubauer-Berigan M, et al. 2007. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res. 167(4):396–416.
  • Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, Howe G, Kaldor J, Muirhead CR, Schubauer-Berigan M, et al. 2005. Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. BMJ. 331(7508):77.
  • Chauhan V, Adam N, Kuo B, Williams A, Yauk CL, Wilkins R, Stainforth R. 2021. Meta-analysis of transcriptomic datasets using benchmark dose modeling shows value in supporting radiation risk assessment. Int J Radiat Biol. 97(1):31–49.
  • Chauhan V, Howland M, Wilkins R. 2014. Identification of gene-based responses in human blood cells exposed to alpha particle radiation. BMC Med Genomics. 7:43.
  • Chauhan V, Kuo B, McNamee JP, Wilkins RC, Yauk CL. 2016. Transcriptional benchmark dose modeling: Exploring how advances in chemical risk assessment may be applied to the radiation field. Environ Mol Mutagen. 57(8):589–604.
  • Chauhan V, Rowan-Carroll A, Gagne R, Kuo B, Williams A, Yauk CL. 2019. The use of in vitro transcriptional data to identify thresholds of effects in a human lens epithelial cell-line exposed to ionizing radiation. Int J Radiat Biol. 95(2):156–169.
  • Chauhan V, Said Z, Daka J, Sadi B, Bijlani D, Marchetti F, Beaton D, Gaw A, Li C, Burtt J, et al. 2019. Is there a role for the adverse outcome pathway framework to support radiation protection? Int J Radiat Biol. 95(2):225–232.
  • Chauhan V, Sherman S, Said Z, Yauk CL, Stainforth R. 2021. A case example of a radiation-relevant adverse outcome pathway to lung cancer. Int J Radiat Biol. 97(1):68–84.
  • Chauhan V, Stricklin D, Cool D. 2021. The integration of the adverse outcome pathway framework to radiation risk assessment. Int J Radiat Biol. 97(1):60–67.
  • Chauhan V, Villeneuve D, Cool D. 2021. Collaborative efforts are needed among the scientific community to advance the adverse outcome pathway concept in areas of radiation risk assessment. Int J Radiat Biol. 97:6:815–823.
  • Chen J, Moir D, Lane R, Thompson P. 2013. An ecological study of cancer incidence in Port Hope, Ontario from 1992 to 2007. J Radiol Prot. 33(1):227–242.
  • Chen J, Moir D. 2010. An updated assessment of radon exposure in Canada. Radiat Prot Dosimetry. 140(2):166–170.
  • Chen J, Timmins R, Verdecchia K, Sato T. 2009. An estimation of Canadian population exposure to cosmic rays. Radiat Environ Biophys. 48(3):317–322.
  • Chen J. 2005a. Canadian individual risks of radon-induced lung cancer for different exposure profiles. Can J Public Health. 96(5):360–363.
  • Chen J. 2005b. Estimated risks of radon-induced lung cancer for different exposure profiles based on the new EPA model. Health Phys. 88(4):323–333.
  • Chen J. 2019. Risk assessment for radon exposure in various indoor environments. Radiat Prot Dosimetry. 185(2):143–150.
  • Dummer TJB, Awadalla P, Boileau C, Craig C, Fortier I, Goel V, Hicks JMT, Jacquemont S, Knoppers BM, Le N, with the CPTP Regional Cohort Consortium, et al. 2018. The Canadian Partnership for Tomorrow Project: a pan-Canadian platform for research on chronic disease prevention. CMAJ. 190(23):E710–E717.
  • Flegal FN, Devantier Y, Marro L, Wilkins RC. 2012. Validation of QuickScan dicentric chromosome analysis for high throughput radiation biological dosimetry. Health Phys. 102(2):143–153.
  • Gribbin MA, Weeks JL, Howe GR. 1993. Cancer mortality (1956–1985) among male employees of Atomic Energy of Canada Limited with respect to occupational exposure to external low-linear-energy-transfer ionizing radiation. Radiat Res. 133(3):375–380.
  • Gueguen Y, Priest ND, Dublineau I, Bannister L, Benderitter M, Durand C, Ebrahimian TG, Gregoire E, Grison S, Ibanez C, et al. 2018. In vivo animal studies help achieve international consensus on standards and guidelines for health risk estimates for chronic exposure to low levels of tritium in drinking water. Environ Mol Mutagen. 59(7):586–594.
  • Hansson B, Allen CH, Qutob S, Behr B, Nyiri B, Chauhan V, Murugkar S. 2019. Development of a flow cell based Raman spectroscopy technique to overcome photodegradation in human blood. Biomed Opt Express. 10(5):2275–2288.
  • Health Physics Special Issue: Canadian Radiation Protection and Research. 2019. Health physics. [accessed 2021]. https://journals.lww.com/health-physics/toc/2019/09000
  • Huang YX, Wu ZJ, Mehrishi J, Huang BT, Chen XY, Zheng XJ, Liu WJ, Luo M. 2011. Human red blood cell aging: correlative changes in surface charge and cell properties. J Cell Mol Med. 15(12):2634–2642.
  • IAEA. 2014. Radiation protection and safety of radiation sources: international basic safety standards. Vienna: International Atomic Energy Agency. https://www.iaea.org/publications/8930/radiation-protection-and-safety-of-radiation-sources-international-basic-safety-standards
  • ICRP. 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP. 37(2–4).
  • ICRU 2019. Methods for initial-phase assessment of individual doses following acute exposure to ionizing radiation, ICRU report No. 94. Bethesda (MD): International Commission on Radiation Units and Measurements.
  • International Agency for Research on Cancer. 2012. Radiation: A review of human carcinogens. Lyon: World Health Organization.
  • ISO 17099. 2014. Radiological protection – performance criteria for laboratories using the cytokinesis block micronucleus (CBMN) assay in peripheral blood lymphocytes for biological dosimetry.
  • ISO 19238 2014. Radiological protection – performance criteria for service laboratories performing biological dosimetry by cytogenetics.
  • ISO 20046 2019. Radiological protection – performance criteria for laboratories using fluorescence in situ hybridization (FISH) translocation assay for assessment of exposure to ionizing radiation.
  • Jahn IJ, Zukovskaja O, Zheng XS, Weber K, Bocklitz TW, Cialla-May D, Popp J. 2017. Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst. 142(7):1022–1047.
  • Lane R, Dagher E, Burtt J, Thompson P. 2013. Radiation exposure and cancer incidence (1990 to 2008) around nuclear power plants in Ontario. JEP. 4(09):888–913.
  • Lane RS, Frost SE, Howe GR, Zablotska LB. 2010. Mortality (1950–1999) and cancer incidence (1969–1999) in the cohort of Eldorado uranium workers. Radiat Res. 174(6A):773–785.
  • Leblanc JE, Burtt JJ. 2019. Radiation biology and its role in the Canadian Radiation Protection Framework. Health Phys. 117(3):319–329.
  • Letourneau EG. 1985. Limitation of exposure to natural radioactivity in Canada. Sci Total Environ. 45:647–656.
  • Levesque B, Gauvin D, McGregor RG, Martel R, Gingras S, Dontigny A, Walker WB, Lajoie P, Letourneau E. 1997. Radon in residences: influences of geological and housing characteristics. Health Phys. 72(6):907–914.
  • Macdonald CR, Elkin BT, Tracy BL. 2007. Radiocesium in caribou and reindeer in northern Canada, Alaska and Greenland from 1958 to 2000. J Environ Radioact. 93(1):1–25.
  • McCullough RS, Letourneau EG, Waight PJ. 1981. A four factor model for estimating human radiation exposure to radon daughters in the home. Health Phys. 40(3):299–305.
  • McNamee JP, Flegal FN, Greene HB, Marro L, Wilkins RC. 2009. Validation of the cytokinesis-block micronucleus (CBMN) assay for use as a triage biological dosimetry tool. Radiat Prot Dosimetry. 135(4):232–242.
  • National Academies of Sciences, Engineering, and Medicine, Division on Earth and Life Studies, Nuclear and Radiation Studies Board. 2019. The future of low dose radiation research in the United States: proceedings of a symposium. Washington (DC): National Academies Press.
  • National Research Council. 1999. Health effects of exposure to radon: BEIR VI. Washington, DC: The National Academies Press.
  • Navaranjan G, Berriault C, Do M, Villeneuve PJ, Demers PA. 2016. Cancer incidence and mortality from exposure to radon progeny among Ontario uranium miners. Occup Environ Med. 73(12):838–845.
  • Perko T, Van Oudheusden M, Turcanu C, Pölzl-Viol C, Oughton D, Schieber C, Schneider T, Zölzer F, Mays C, Martell M, et al. 2019. Towards a strategic research agenda for social sciences and humanities in radiological protection. J Radiol Prot. 39(3):766–784.
  • Premasiri WR, Lee JC, Ziegler LD. 2012. Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing. J Phys Chem B. 116(31):9376–9386.
  • Qu JY, Wilson BC, Suria D. 1999. Concentration measurements of multiple analytes in human sera by near-infrared laser Raman spectroscopy. Appl Opt. 38(25):5491–5498.
  • Qutob SS, Chauhan V, Kuo B, Williams A, Yauk CL, McNamee JP, Gollapudi B. 2018. The application of transcriptional benchmark dose modeling for deriving thresholds of effects associated with solar-simulated ultraviolet radiation exposure. Environ Mol Mutagen. 59(6):502–515.
  • Radiation Research Special Issue: Snolab. 2017. Radiation research. [accessed]. https://www.radres.org/news/374563/Radiation-Research-Table-of-Contents-October-2017–Part-2.htm
  • Rage E, Richardson DB, Demers PA, Do M, Fenske N, Kreuzer M, Samet J, Wiggins C, Schubauer-Berigan MK, Kelly-Reif K, et al. 2020. PUMA – pooled uranium miners analysis: cohort profile. Occup Environ Med. 77(3):194–200.
  • Repussard J. 2019. Understanding low dose radiation exposure effects: MELODI's views on developing international cooperation. Int J Radiat Biol. 95(10):1354–1357.
  • Rodrigues MA, Probst CE, Beaton-Green LA, Wilkins RC. 2016. Optimized automated data analysis for the cytokinesis-block micronucleus assay using imaging flow cytometry for high throughput radiation biodosimetry. Cytometry A. 89(7):653–662.
  • Ruhm W, Eidemuller M, Kaiser JC. 2017. Biologically-based mechanistic models of radiation-related carcinogenesis applied to epidemiological data. Int J Radiat Biol. 93(10):1093–1117.
  • Rusciano G, De Luca AC, Pesce G, Sasso A. 2008. Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders. Sensors. 8(12):7818–7832.
  • Salomaa S, Jourdain JR, Kreuzer M, Jung T, Repussard J. 2017. Multidisciplinary European low dose initiative: an update of the MELODI program. Int J Radiat Biol. 93(10):1035–1039.
  • Schofield PN, Kulka U, Tapio S, Grosche B. 2019. Big data in radiation biology and epidemiology; an overview of the historical and contemporary landscape of data and biomaterial archives. Int J Radiat Biol. 95(7):861–878.
  • Sont WN, Zielinski JM, Ashmore JP, Jiang H, Krewski D, Fair ME, Band PR, Letourneau EG. 2001. First analysis of cancer incidence and occupational radiation exposure based on the National Dose Registry of Canada. Am J Epidemiol. 153(4):309–318.
  • Spiro TG, Strekas TC. 1974. Resonance Raman spectra of heme proteins. Effects of oxidation and spin state. J Am Chem Soc. 96(2):338–345.
  • Strekas TC, Spiro TG. 1972. Hemoglobin: resonance Raman spectra. Biochim Biophys Acta. 263(3):830–833.
  • Sweeney E, Cui Y, DeClercq V, Devichand P, Forbes C, Grandy S, Hicks JMT, Keats M, Parker L, Thompson D, et al. 2017. Cohort profile: the Atlantic Partnership for Tomorrow's Health (Atlantic PATH) Study. Int J Epidemiol. 46(6):1762–1763.
  • Thomas PA, Fisenne I, Chorney D, Baweja AS, Tracy BL. 2001. Human absorption and retention of polonium-210 from Caribou meat. Radiat Prot Dosimetry. 97(3):241–250.
  • Thomas RS, Philbert MA, Auerbach SS, Wetmore BA, Devito MJ, Cote I, Rowlands JC, Whelan MP, Hays SM, Andersen ME, et al. 2013. Incorporating new technologies into toxicity testing and risk assessment: moving from 21st century vision to a data-driven framework. Toxicol Sci. 136(1):4–18.
  • Thompson PA, Hamlat MS, Lane R, Mihok S, Reinhardt P, Bundy K. 2011. Revue de l’état des connaissances des effets du tritium sur la santé et l’environnement au Canada–un outil pour orienter la surveillance réglementaire [Review of the knowledge available to date on the effects of tritium exposure on health and the environment in Canada–a tool to guide regulatory compliance monitoring]. Radioprotection. 46(4):511–531.
  • Tracy BL, Kramer GH, Zielinski JM, Jiang H. 1997. Radiocesium body burdens in residents of northern Canada from 1963–1990. Health Phys. 72(3):431–442.
  • Tracy BL, Krewski D, Chen J, Zielinski JM, Brand KP, Meyerhof D. 2006. Assessment and management of residential radon health risks: a report from the health Canada radon workshop. J Toxicol Environ Health A. 69(7):735–758.
  • Tracy BL, Prantl FA, Quinn JM. 1983. Transfer of 226Ra, 210Pb and uranium from soil to garden produce: assessment of risk. Health Phys. 44(5):469–477.
  • United Nations. 2008. Sources and effects of ionizing radiation. UNSCEAR 2006 Report to the General Assembly with Scientific Annexes. Volume I, Annex A: Epidemiological studies of radiation and cancer. New York (NY).
  • United Nations. 2009. Effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2006 report to the general assembly with scientific annexes. New York (NY).
  • Villeneuve PJ, Lane RS, Morrison HI. 2007. Coronary heart disease mortality and radon exposure in the Newfoundland fluorspar miners' cohort, 1950–2001. Radiat Environ Biophys. 46(3):291–296.
  • Wang Y, Bannister LA, Sebastian S, Le Y, Ismail Y, Didychuk C, Richardson RB, Flegal F, Paterson LC, Causey P, et al. 2019. Low-dose radiobiology program at Canadian nuclear laboratories: past, present, and future. Int J Radiat Biol. 95(10):1361–1371.
  • Weiss W, Yonekura Y. 2019. International co-operation in biological research to address low dose radiation risk: Osaka call-for-action. Int J Radiat Biol. 95(10):1351–1353.
  • Wilkins RC, Rodrigues MA, Beaton-Green LA. 2017. The application of imaging flow cytometry to high-throughput biodosimetry. Genome Integr. 8(1):7–7.
  • Wood BR, Hammer L, Davis L, McNaughton D. 2005. Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes. J Biomed Opt. 10(1):14005.
  • Wu Y, Huang YX, Kang LL, Wu ZJ, Luo M. 2010. Effect of pH on molecular constitution and distribution of hemoglobin in living erythrocyte. Biopolymers. 93(4):348–354.
  • Yan F, Vo-Dinh T. 2007. Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sens Actuators B. 121(1):61–66.
  • Yang L, Allen BC, Thomas RS. 2007. BMDExpress: a software tool for the benchmark dose analyses of genomic data. BMC Genomics. 8:387.
  • Zablotska LB, Ashmore JP, Howe GR. 2004. Analysis of mortality among Canadian nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat Res. 161(6):633–641.
  • Zablotska LB, Lane RS, Thompson PA. 2014. A reanalysis of cancer mortality in Canadian nuclear workers (1956–1994) based on revised exposure and cohort data. Br J Cancer. 110(1):214–223.
  • Zamora ML, Tracy BL, Zielinski JM, Meyerhof DP, Moss MA. 1998. Chronic ingestion of uranium in drinking water: a study of kidney bioeffects in humans. Toxicol Sci. 43(1):68–77.
  • Zamora ML, Zielinski JM, Moodie GB, Falcomer RA, Hunt WC, Capello K. 2009. Uranium in drinking water: renal effects of long-term ingestion by an aboriginal community. Arch Environ Occup Health. 64(4):228–241.
  • Zander A, Paunesku T, Woloschak G. 2019. Radiation databases and archives – examples and comparisons. Int J Radiat Biol. 95(10):1378–1389.