565
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1229-1240 | Received 24 Mar 2021, Accepted 21 Jun 2021, Published online: 19 Jul 2021

References

  • Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, et al. 2003. Geant4—a simulation toolkit. Nucl Instrum Meth A. 506:250–303.
  • Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R, et al. 2006. Geant4 developments and applications. IEEE Trans Nucl Sci. 53(1):270–278.
  • Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, et al. 2016. Recent Developments in Geant4. Nucl Instrum Meth A. 835:186–225.
  • Ando K, Koike S, Uzawa A, Takai N, Fukawa T, Furusawa Y, Aoki M, Miyato Y. 2005. Biological gain of carbon-ion radiotherapy for the early response of tumor growth delay and against early response of skin reaction in mice. J Radiat Res. 46(1):51–57.
  • Asaithamby A, Hu B, Chen DJ. 2011. Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc Natl Acad Sci USA. 108(20):8293–8298.
  • Banáth JP, Klokov D, Macphail SH, Banuelos CA, Olive PL. 2010. Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer. 10:4.
  • Barbieri S, Babini G, Morini J, Friedland W, Buonanno M, Grilj V, Brenner DJ, Ottolenghi A, Baiocco G. 2019. Predicting DNA damage foci and their experimental readout with 2D microscopy: a unified approach applied to photon and neutron exposures. Sci Rep. 9(1):14019.
  • Belka C. 2006. The fate of irradiated tumor cells. Oncogene. 25(7):969–971.
  • Belli M, Bettega D, Calzolari P, Cherubini R, Cuttone G, Durante M, Esposito G, Furusawa Y, Gerardi S, Gialanella G, et al. 2008. Effectiveness of monoenergetic and spread-out Bragg peak carbon-ions for inactivation of various normal and tumour human cell lines. J Radiat Res. 49(6):597–607.
  • Bernal MA, Bordage MC, Brown JMC, Davídková M, Delage E, El Bitar Z, Enger SA, Francis Z, Guatelli S, Ivanchenko VN, et al. 2015. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys Med. 31(8):861–874.
  • Calugaru V, Nauraye C, Noël G, Giocanti N, Favaudon V, Mégnin-Chanet F. 2011. Radiobiological characterization of two therapeutic proton beams with different initial energy spectra used at the Institut Curie Proton Therapy Center in Orsay. Int J Radiat Oncol Biol Phys. 81(4):1136–1143.
  • Chatzipapas KP, Papadimitroulas P, Emfietzoglou D, Kalospyros SA, Hada M, Georgakilas AG, Kagadis GC. 2020. Ionizing radiation and complex DNA damage: quantifying the radiobiological damage using Monte Carlo simulations. Cancers. 12(4):799.
  • Choi J, Kang JO. 2012. Basics of particle therapy II: relative biological effectiveness. Radiat Oncol J. 30(1):1–13.
  • Cirrone GAP, Cuttone G, Guatelli S, Lo Nigro S, Mascialino B, Pia MG, Raffaele L, Russo G, Sabini MG. 2005. Implementation of a new Monte Carlo-Geant4 simulation tool for the development of a proton therapy beamline and verification of the related dose distributions. IEEE Trans Nucl Sci. 52(1):262–265.
  • Cirrone G, Cuttone G, Lojacono PA, Lo Nigro S, Mongelli V, Patti IV, Privitera G, Raffaele L, Rifuggiato D, Sabini MG, et al. 2004. A 62-MeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud-INFN. IEEE Trans Nucl Sci. 51(3):860–865.
  • Cirrone GAP, Cuttone G, Raffaele L, Salamone V, Avitabile T, Privitera G, Spatola C, Amico AG, Larosa G, Leanza R, et al. 2017. Corrigendum: clinical and research activities at the CATANA facility of INFN-LNS: from the conventional hadrontherapy to the laser-driven approach. Front Oncol. 7:247.
  • Cooke SL, Temple J, Macarthur S, Zahra MA, Tan LT, Crawford RAF, Ng CKY, Jimenez-Linan M, Sala E, Brenton JD. 2011. Intra-tumour genetic heterogeneity and poor chemoradiotherapy response in cervical cancer. Br J Cancer. 104(2):361–368.
  • Durante M, Orecchia R, Loeffler JS. 2017. Charged-particle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol. 14(8):483–495.
  • Fertil B, Malaise EP. 1981. Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Int J Radiat Oncol Biol Phys. 7(5):621–629.
  • Fokas E, Kraft G, An H, Engenhart-Cabillic R. 2009. Ion beam radiobiology and cancer: time to update ourselves. Biochim Biophys Acta. 1796(2):216–229.
  • Friedland W, Schmitt E, Kundrát P, Dingfelder M, Baiocco G, Barbieri S, Ottolenghi A. 2017. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping. Sci Rep. 7:45161.
  • Goodhead DT. 1994. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol. 65(1):7–17.
  • Goodhead DT, Thacker J, Cox R. 1993. Weiss Lecture. Effects of radiations of different qualities on cells: molecular mechanisms of damage and repair. Int J Radiat Biol. 63(5):543–556.
  • Gulston M, de Lara C, Jenner T, Davis E, O'Neill P. 2004. Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells post-irradiation. Nucleic Acids Res. 32(4):1602–1609.
  • Hagiwara Y, Oike T, Niimi A, Yamauchi M, Sato H, Limsirichaikul S, Held KD, Nakano T, Shibata A. 2019. Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation. J Radiat Res. 60(1):69–79.
  • Ilicic K, Combs SE, Schmid TE. 2018. New insights in the relative radiobiological effectiveness of proton irradiation. Radiat Oncol. 13(1):6.
  • Incerti S, Baldacchino G, Bernal M, Capra R, Champion C, Francis Z, Guèye P, Mantero A, Mascialino B, Moretto P, et al. 2010. The Geant4-DNA project. Int J Model Simul Sci Comput. 01(02):157–178.
  • Incerti S, Champion C, Tran HN, Karamitros M, Bernal M, Francis Z, Ivanchenko V, Mantero A. 2013. Energy deposition in small-scale targets of liquid water using the very low energy electromagnetic physics processes of the Geant4 toolkit. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms. 306:158–164.
  • Incerti S, Douglass M, Penfold S, Guatelli S, Bezak E. 2016. Review of Geant4-DNA applications for micro and nanoscale simulations. Phys Med. 32(10):1187–1200.
  • Incerti S, Ivanchenko A, Karamitros M, Mantero A, Moretto P, Tran HN, Mascialino B, Champion C, Ivanchenko VN, Bernal MA, et al. 2010. Comparison of Geant4 very low energy cross section models with experimental data in water. Med Phys. 37(9):4692–4708.
  • Incerti S, Kyriakou I, Bernal MA, Bordage MC, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee SB, et al. 2018. Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA Project. Med Phys. 45:e722–e739.
  • International Atomic Energy Agency (IAEA) 2000. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Technical Reports Series No. 398, IAEA, Vienna.
  • Ivashkevich AN, Martin OA, Smith AJ, Redon CE, Bonner WM, Martin RF, Lobachevsky PN. 2011. γH2AX foci as a measure of DNA damage: a computational approach to automatic analysis. Mutat Res. 711(1–2):49–60.
  • Liu H, Chang JY. 2011. Proton therapy in clinical practice. Chin J Cancer. 30(5):315–326.
  • Löbrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA. 2010. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 9(4):662–669.
  • Loeffler JS, Durante M. 2013. Charged particle therapy-optimization, challenges and future directions. Nat Rev Clin Oncol. 10(7):411–424.
  • Lopez Perez R, Best G, Nicolay NH, Greubel C, Rossberger S, Reindl J, Dollinger G, Weber KJ, Cremer C, Huber PE. 2016. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci. Faseb J. 30(8):2767–2776.
  • Lopez Perez R, Nicolay NH, Wolf JC, Frister M, Schmezer P, Weber KJ, Huber PE. 2019. DNA damage response of clinical carbon ion versus photon radiation in human glioblastoma cells. Radiother Oncol. 133:77–86.
  • Lu H, Saha J, Beckmann PJ, Hendrickson EA, Davis AJ. 2019. DNA-PKcs promotes chromatin decondensation to facilitate initiation of the DNA damage response. Nucleic Acids Res. 47(18):9467–9479.
  • Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. 2020. Carbon ion therapy: a modern review of an emerging technology. Front Oncol. 10:82.
  • Mao Z, Bozzella M, Seluanov A, Gorbunova V. 2008. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 7(18):2902–2906.
  • Mavragani IV, Laskaratou DA, Frey B, Candéias SM, Gaipl US, Lumniczky K, Georgakilas AG. 2016. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol Res. 5(1):12–33.
  • McMahon SJ, McNamara AL, Schuemann J, Paganetti H, Prise KM. 2017. A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation. Sci Rep. 7(1):10790.
  • Mein S, Dokic I, Klein C, Tessonnier T, Böhlen TT, Magro G, Bauer J, Ferrari A, Parodi K, Haberer T, et al. 2019. Biophysical modeling and experimental validation of relative biological effectiveness (RBE) for 4He ion beam therapy. Radiat Oncol. 14(1):123.
  • Nickoloff JA, Sharma N, Taylor L. 2020. Clustered DNA double-strand breaks: biological effects and relevance to cancer radiotherapy. Genes. 11(1):99.
  • Nikjoo H, O'Neill P, Terrissol M, Goodhead DT. 1994. Modelling of radiation-induced DNA damage: the early physical and chemical event. Int J Radiat Biol. 66(5):453–457.
  • Oeck S, Szymonowicz K, Wiel G, Krysztofiak A, Lambert J, Koska B, Iliakis G, Timmermann B, Jendrossek V. 2018. Relating linear energy transfer to the formation and resolution of DNA repair foci after irradiation with equal doses of X-ray photons, plateau, or Bragg-peak protons. IJMS. 19(12):3779.
  • Okayasu R. 2012. Repair of DNA damage induced by accelerated heavy ions-a mini review. Int J Cancer. 130(5):991–1000.
  • Ostashevsky JY. 1989. A model relating cell survival to DNA fragment loss and unrepaired double-strand breaks. Radiat Res. 118(3):437–466.
  • Paganetti H. 2014. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 59(22):R419–72.
  • Paganetti H. 2018. Proton relative biological effectiveness - uncertainties and opportunities. Int J Part Ther. 5(1):2–14.
  • Paganetti H, Niemierko A, Ancukiewicz M, Gerweck LE, Goitein M, Loeffler JS, Suit HD. 2002. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 53(2):407–421.
  • Petringa G, Pandola L, Agosteo S, Catalano R, Colautti P, Conte V, Cuttone G, Fan K, Mei Z, Rosenfeld A, et al. 2020. Monte Carlo implementation of new algorithms for the evaluation of averaged-dose and -track linear energy transfers in 62 MeV clinical proton beams. Phys Med Biol. 65(23):235043.
  • Petrović I, Ristić Fira A, Keta O, Petković V, Petringa G, Cirrone P, Cuttone GAP. 2020. A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines. Int J Radiat Biol. 96(11):1400–1412.
  • Petrović I, Ristic-Fira A, Todorovic D, Koricanac L, Valastro L, Cirrone P, Cuttone G. 2010. Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak . Int J Radiat Biol. 86(9):742–751.
  • Petrović I, Ristić-Fira A, Todorović D, Valastro L, Cirrone P, Cuttone G. 2006. Radiobiological analysis of human melanoma cells on the 62 MeV CATANA proton beam. Int J Radiat Biol. 2:215–265.
  • Ray S, Cekanaviciute E, Lima IP, Sørensen BS, Costes SV. 2018. Comparing photon and charged particle therapy using DNA damage biomarkers. Int J Part Ther. 5(1):15–24.
  • Redon CE, Dickey JS, Bonner WM, Sedelnikova OA. 2009. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res. 43(8):1171–1178.
  • Ristić Fira A, Keta O, Petković V, Cammarata FP, Petringa G, Cirrone GAP, Cuttone G, Incerti S, Petrović I. 2020. DNA damage assessment of human breast and lung carcinoma cells irradiated with protons and carbon ions. J Radiat Res App Sc. 13:672–687.
  • Romano F, Cirrone GA, Cuttone G, Rosa FD, Mazzaglia SE, Petrovic I, Fira AR, Varisano A. 2014. A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line. Phys Med Biol. 59(12):2863–2882.
  • Roots R, Okada S. 1972. Protection of DNA molecules of cultured mammalian cells from radiation-induced single-strand scissions by various alcohols and SH compounds. Int J Radiat Biol Relat Stud Phys Chem Med. 21(4):329–342.
  • Rothkamm K, Horn S. 2009. Gamma-H2AX as protein biomarker for radiation exposure. Ann Ist Super Sanita. 45(3):265–271.
  • Sage E, Shikazono N. 2017. Radiation-induced clustered DNA lesions: repair and mutagenesis. Free Radic Biol Med. 107:125–135.
  • Sakata D, Belov O, Bordage MC, Emfietzoglou D, Guatelli S, Inaniwa T, Ivanchenko V, Karamitros M, Kyriakou I, Lampe N, et al. 2020. Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA. Sci Rep. 10(1):20788.
  • Sakata D, Lampe N, Karamitros M, Kyriakou I, Belov O, Bernal MA, Bolst D, Bordage MC, Breton V, Brown JMC, et al. 2019. Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA. Phys Med. 62:152–157.
  • Schipler A, Iliakis G. 2013. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res. 41(16):7589–7605.
  • Shim G, Normil MD, Testard I, Hempel WM, Ricoul M, Sabatier L. 2016. Comparison of individual radiosensitivity to γ-rays and carbon ions. Front Oncol. 6:137.
  • Suzuki M, Kase Y, Yamaguchi H, Kanai T, Ando K. 2000. Relative biological effectiveness for cell-killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams. Int J Radiat Oncol Biol Phys. 48(1):241–250.
  • Tommasino F, Durante M. 2015. Proton radiobiology. Cancers. 7(1):353–381.
  • van de Water TA, Lomax AJ, Bijl HP, de Jong ME, Schilstra C, Hug EB, Langendijk JA. 2011. Potential benefits of scanned intensity-modulated proton therapy versus advanced photon therapy with regard to sparing of the salivary glands in oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 79(4):1216–1224.
  • Vitti ET, Parsons JL. 2019. The radiobiological effects of proton beam therapy: impact on DNA damage and repair. Cancers. 11(7):946.
  • Wallace SS. 1998. Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res. 150(5 Suppl):S60–S79.
  • Weber U, Kraft G. 2009. Comparison of carbon ions versus protons. Cancer J. 15(4):325–332.
  • Weyrather WK, Kraft G. 2004. RBE of carbon ions: experimental data and the strategy of RBE calculation for treatment planning. Radiother Oncol. Suppl. 73:S161–S9.
  • Zhang X, Ye C, Sun F, Wei W, Hu B, Wang J. 2016. Both complexity and location of DNA damage contribute to cellular senescence induced by ionizing radiation. PLOS One. 11(5):e0155725.
  • Zlobinskaya O, Dollinger G, Michalski D, Hable V, Greubel C, Du G, Multhoff G, Röper B, Molls M, Schmid TE. 2012. Induction and repair of DNA double-strand breaks assessed by gamma-H2AX foci after irradiation with pulsed or continuous proton beams. Radiat Environ Biophys. 51(1):23–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.