194
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Modeling bystander effects that cause growth delay of breast cancer xenografts in bone marrow of mice treated with radium-223

, , , , , & ORCID Icon show all
Pages 1217-1228 | Received 11 Mar 2021, Accepted 22 Jun 2021, Published online: 26 Jul 2021

References

  • Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, et al. 2003. GEANT4: a simulation toolkit. Nucl Instrum Methods. 506:250–303.
  • Akudugu JM, Azzam EI, Howell RW. 2012. Induction of lethal bystander effects in human breast cancer cell cultures by DNA-incorporated Iodine-125 depends on phenotype. Int J Radiat Biol. 88(12):1028–1038.
  • Azzam EI, de Toledo SM, Little JB. 2001. Direct evidence for participation of gap-junction mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to non-irradiated cells. Proc Natl Acad Sci USA. 98(2):473–478.
  • Belyakov OV, Mitchell SA, Parikh D, Randers-Pehrson G, Marino SA, Amundson S, Geard C, Brenner D. 2005. Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away. Proc Natl Acad Sci USA. 102(40):14203–14208.
  • Bishayee A, Rao DV, Howell RW. 1999. Evidence for pronounced bystander effects caused by nonuniform distribution of radioactivity using a novel three-dimensional tissue culture model. Radiat Res. 152(1):88–97.
  • Brady D, O’Sullivan JM, Prise KM. 2013. What is the role of bystander response in Radionuclide Therapies? Front Oncol. 3:215.
  • Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G, et al. 2005. A pooled analisys of bone marrow micrometastasis in breast cancer. N Engl J Med. 353(8):793–802.
  • Brewster AM, Hortobagyi GN, Broglio KR, Kau S-W, Santa-Maria CA, Arun B, Buzdar AU, Booser DJ, Valero V, Bondy M, et al. 2008. Residual risk of breast cancer recurrence 5 years after adjuvant therapy. J Natl Cancer Inst. 100(16):1179–1183.
  • Brown HK, Ottewell PD, Evans CA, Holen I. 2012. Location matters: osteoblast and osteoclast distribution is modified by the presence and proximity to breast cancer cells in vivo. Clin Exp Metastasis. 29(8):927–938.
  • Canter BS, Leung CN, Fritton JC, Bäck T, Rajon D, Azzam EI, Howell RW. 2021. Radium-223-induced bystander effects cause DNA damage and apoptosis in disseminated tumor cells in bone marrow. Mol Canc Res. DOI: https://doi.org/10.1158/1541-7786.MCR-21-0005. [Epub ahead of print]. PMID: 34039648.
  • Dondossola E, Casarin S, Paindelli C, De-Juan-Pardo EM, Hutmacher DW, Logothetis CJ, Friedl P. 2019. Radium 223-mediated zonal cytotoxicity of prostate cancer in bone. J Natl Cancer Inst. 111(10):1042–1050.
  • Duangmano S, Sae-Lim P, Suksamrarn A, Patmasiriwat P, Domann FE. 2012. Cucurbitacin B causes increased radiation sensitivity of human breast cancer cells via G2/M cell cycle arrest. J Oncol. 2012:601682.
  • Florencio-Silva R, Sasso G. R d S, Sasso-Cerri E, Simões MJ, Cerri PS. 2015. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015:421746.
  • Fox CH, Johnson FB, Whiting J, Roller PP. 1985. Formaldehyde fixation. J Histochem Cytochem. 33(8):845–853.
  • Gaillard S, Pusset D, de Toledo SM, Fromm M, Azzam EI. 2009. Propagation distance of the alpha-particle-induced bystander effect: the role of nuclear traversal and gap junction communication. Radiat Res. 171(5):513–520.
  • Gevorgyan A, Sukhu B, Alman BA, Bristow RG, Pang CY, Forrest CR. 2008. Radiation effects and radioprotection in MC3T3-E1 mouse calvarial osteoblastic cells. Plast Reconstr Surg. 122(4):1025–1035.
  • Gruber HE, Ivey JL, Thompson ER, Chesnut CH, Baylink DJ. 1986. Osteoblast and osteoclast cell number and cell activity in postmenopausal osteoporosis. Miner Electrolyte Metab. 12(4):246–254.
  • Henriksen G, Breistol K, Bruland OS, Fodstad O, Larsen RH. 2002. Significant antitumor effect from bone-seeking, alpha-particle-emitting radium-223 demonstrated in an experimental skeletal metastases model. Cancer Res. 62:3120–3125.
  • Henriksen G, Fisher DR, Roeske JC, Bruland OS, Larsen RH. 2003. Targeting of osseous sites with alpha-emitting 223ra: comparison with the beta-emitter 89sr in mice. J Nucl Med. 44(2):252–259.
  • Hiddemann W, Clarkson BD, Büchner T, Melamed MR, Andreeff M. 1982. Bone marrow cell count per cubic millimeter bone marrow: a new parameter for quantitating therapy-induced cytoreduction in acute leukemia. Blood. 59(2):216–225.
  • Hobbs RF, Song H, Watchman CJ, Bolch WE, Aksnes A-K, Ramdahl T, Flux GD, Sgouros G. 2012. A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy. Phys Med Biol. 57(10):3207–3222.
  • Howell RW, Narra VR, Rao DV, Sastry KSR. 1990. Radiobiological effects of intercellular polonium-210 alpha emissions: a comparison with Auger-emitters. Radiat Prot Dosim. 31(1–4):325–328.
  • Howell RW, Rajon D, Bolch WE. 2012. Monte Carlo simulation of irradiation and killing in three-dimensional cell populations with lognormal cellular uptake of radioactivity. Int J Radiat Biol. 88(1–2):115–122.
  • ICRP. 1994. Basic anatomical and physiological data for use in radiological protection: The skeleton. Ann ICRP. Publication 70. Oxford: Pergamon.
  • Leung CN, Canter BS, Rajon D, Bäck TA, Fritton JC, Azzam EI, Howell RW. 2020. Dose-dependent growth delay of breast cancer xenografts in bone marrow of mice treated with radium-233: the role of bystander effects and their potential for therapy. J Nucl Med. 61(1):89–95.
  • Lundberg P, Koskinen C, Baldock PA, Löthgren H, Stenberg A, Lerner UH, Oldenborg PA. 2007. Osteoclast formation is strongly reduced both in vivo and in vitro in the absence of CD47/SIRPalpha-interaction . Biochem Biophys Res Commun. 352(2):444–448.
  • Moreira HMR, Guerra Liberal FDC, O’Sullivan JM, McMahon SJ, Prise KM. 2019. Mechanistic modeling of radium-223 treatment of bone metastases. Int J Radiat Oncol Biol Phys. 103(5):1221–1230.
  • Mouton PR. 2002. Principles and practices of unbiased stereology: an introduction to bioscientists. Baltimore: Johns Hopkins University Press.
  • Neti PV, de Toledo SM, Perumal V, Azzam EI, Howell RW. 2004. A multi-port low-fluence alpha-particle irradiator: fabrication, testing and benchmark radiobiological studies . Radiat Res. 161(6):732–738.
  • Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe J-P, Tong F, et al. 2006. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 10(6):515–527.
  • Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, Chodacki A, Wiechno P, Logue J, Seke M, et al. 2013. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 369(3):213–223.
  • Pinto GA, Bonifacio DAB, de Sá LV, Lima LFC, Viera IF. 2020. A cell-based dosimetry model for radium-223 dichloride therapy using bone micro-CT images and DATE simulations.Phys Med Biol. 65:16. DOI: https://doi.org/10.1088/1361-6560/ab6b42. PMID: 31935695.
  • Rajon DA, Bolch WE, Howell RW. 2011. Lognormal distribution of cellular uptake of radioactivity: Monte Carlo simulation of irradiation and cell killing in 3-dimensional populations in carbon scaffolds. J Nucl Med. 52(6):926–933.
  • Rajon DA, Bolch WE, Howell RW. 2013. Survival of tumor and normal cells upon targeting with electron-emitting radionuclides. Med Phys. 40:1–9.
  • Rajon DA, Pichardo JC, Brindle JM, Kielar KN, Jokisch DW, Patton PW, Bolch WE. 2006. Image segmentation of trabecular spongiosa by visual inspection of the gradient magnitude. Phys Med Biol. 51(18):4447–4467.
  • Sandkühler S, Gross E. 1956. Normal bone marrow total cell and differential values by quantitative analysis of particle smears. Blood. 11(9):856–862.
  • Secondini C, Wetterwald A, Schwaninger R, Thalmann GN, Cecchini MG. 2011. The role of the BMP signaling antagonist noggin in the development of prostate cancer osteolytic bone metastasis. PLOS One. 6(1):e16078.
  • Selvaggi G, Scagliotti GV. 2005. Management of bone metastases in cancer: a review. Crit Rev Oncol Hematol. 56(3):365–378.
  • Shao C, Folkard M, Held KD, Prise KM. 2008. Estrogen enhanced cell-cell signaling in breast cancer cells axposed to targeted irradiation. BMC Cancer. 8(1):9 doi:https://doi.org/10.1186/1471-2407-8-184. PMID: 18590532, PMCID: PMC2443807.
  • Sun Q, Liu T, Yuan Y, Guo Z, Xie G, Du S, Lin X, Xu Z, Liu M, Wang W, et al. 2015. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer. 136(5):1003–1012.
  • Suominen MI, Rissanen JP, Kakonen R, Fagerlund KM, Alhoniemi E, Mumberg D, Ziegelbauer K, Halleen LM, Käkönen SM, Scholz A. 2013. Survival benefit with radium-223 dichloride in a mouse model of breast cancer bone mestatasis. J Natl Cancer Inst. 105(12):908–916.
  • Svetličič M, Bomhard A, Sterr C, Brückner F, Płódowska M, Lisowska H, Lundholm L. 2020. Alpha radiation as a way to target heterochromatic and gamma radiation-exposed breast cancer cells. Cells. 9(5):1165.
  • Travlos GS. 2006. Normal structure, function, and histology of the bone marrow. Toxicol Pathol. 34(5):548–565.
  • Vaziri B, Wu H, Dhawan AP, Du P, Howell RW. 2014. MIRD pamphlet No. 25: MIRDcell V2.0 Software Tool for dosimetric analysis of biologic response of multicellular populations. J Nucl Med. 55(9):1557–1564.
  • Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Camacho NP, Bostrom MPG. 2007. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone. 41(6):928–936.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.