108
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of DNA damage in somatic and germ cells of animals living with increased radiation background and their offspring

ORCID Icon, ORCID Icon & ORCID Icon
Pages 499-509 | Received 03 Feb 2022, Accepted 27 Jun 2022, Published online: 15 Aug 2022

References

  • Afanasieva KS, Zazhytskaya MO, Sivolob AV. 2009. Mechanisms of DNA exit during neutral and alkaline comet assay. Cytol Genet. 43(6):367–370.
  • Akhmatullina NB. 2005. The long-term effects of the radiation action and induced genome instability. Radiats Biol Radioecol. 4(6):680–687. Russian.
  • Albi E, Cataldi S, Lazzarini A, Codini M, Beccari T, Ambesi-Impiombato FS, Curcio F. 2017. Radiation and thyroid cancer. Int J Mol Sci. 18(5):911.
  • Aleksakhin RM, Arkhipov NP, Barkhudarov RM. 1990. Heavy natural radioactive nuclides in biosphere: migration and biological effect on populations and biogeocenosis. Moscow: Nauka Publishers; p. 368. Russian.
  • Aypar U, Morgan WF, Baulch JE. 2011. Radiation-induced epigenetic alterations after low and high LET irradiations. Mutat Res. 707(1–2):24–33.
  • Barber RC, Hickenbotham P, Hatch T, Kelly D, Topchiy N, Almeida GM, Jones GDD, Johnson GE, Parry JM, Rothkamm K, et al. 2006. Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene. 25(56):7336–7342.
  • Beresford NA, Horemans N, Copplestone D, Raines KE, Orizaola G, Wood MD, Laanen P, Whitehead HC, Burrows JE, Tinsley MC, et al. 2020. Towards solving a scientific controversy – the effects of ionising radiation on the environment. J Environ Radioact. 211:106033.
  • Biswas R, Poddar S, Mukherjee A. 2007. Investigation on the genotoxic effects of long-term administration of sodium arsenite in bone marrow and testicular cells in vivo using the comet assay. J Environ Pathol Toxicol Oncol. 26(1):29–37.
  • Boubriak I, Akimkina T, Polischuk V, Dmitriev A, McCready S, Grodzinsky D. 2016. Long term effects of Chernobyl contamination on DNA repair function and plant resistance to different biotic and abiotic stress factors. Cytol Genet. 50(6):381–399.
  • Bychkovskaia IB, Kirik OV, Fedortseva RF. 2014. On the issue of non-mutagenic non-targeted effects in low renewable tissues. Analysis of low dose radiation effects on the rat renal tubule epithelium. Radiat Biol Radioecol. 54(4):360–366. Russian.
  • Bychkovskaya IB. 2013. Non mutagenic non targeted radiation effects. determined decrease of cells viability in populations induced by low dose. Radiat Biol Radioecol. 53(3):246–258. Russian.
  • Cannon G, Kiang JG. 2020. A review of the impact on the ecosystem after ionizing irradiation: wildlife population. Int J Radiat Biol. 98(6):54–62.
  • Collins AR, Oscoz AA, Brunborg G, Gaivão I, Giovannelli L, Kruszewski M, Smith CC, Stetina R. 2008. The comet assay: topical issues. Mutagenesis. 23(3):143–151.
  • Dobrovolsky GV, Taskaev AI, Zaboeva IV. 2010. Soil atlas of the Komi Republic. Syktyvkar: Komi republican printing house. р. 356 Russian.
  • Dubrova YE. 2006. Genomic instability in the offspring of irradiated parents: facts and interpretations. Russ J Genet. 42(10):1116–1126. Russian.
  • Dubrova YE, Sarapultseva EI. 2020. Radiation-induced transgenerational effects in animals. Int J Radiat Biol. 3:1–7.
  • Durnev AD, Volgareva GM, Seredenin SB. 1998. General problems in the study of mutagenic properties of drugs. Exp Klin Farmakol. 61(2):7–12. Russian.
  • Eaton SA, Jayasooriah N, Buckland ME, Martin DI, Cropley JE, Suter CM. 2015. Roll over Weismann: extracellular vesicles in the transgenerational transmission of environmental effects. Epigenomics. 7(7):1165–1171.
  • Ermakova OV, Bashlykova LA, Raskosha OV, Starobor NN. 2020. Effects of chronic low-intensity irradiation on reproductive parameters of the root vole (Alexandromys oeconomus): responses of parents and offspring. Russ J Ecol. 51(3):242–249.
  • European Commission. 2012. Recommendation from the scientific committee on occupational exposure limits for ethyl carbamate (Urethane). SCOEL/SUM/172. accessed at http://ec.europa.eu/social/BlobServlet?docId=7723&langId=en.
  • EEC. 1986. European convention for the protection of vertebrate animals used for Experimental and Other Scientific Purposes (86/609/EEC). Strasburg. Соuncil of Europe. p. 51. p.
  • Evseeva TI, Taskaev AI, Kichigin AI. 2000. Vodnyy promysel. Syktyvkar, р. 39. Russian.
  • Filkowski JN, Ilnytskyy Y, Tamminga J, Koturbash I, Golubov A, Bagnyukova T, Pogribny IP, Kovalchuk O. 2010. Hypomethylation and genome instability in the germline of exposed parents and their progeny is associated with altered miRNA expression. Carcinogenesis. 31(6):1110–1115.
  • Fomenko LA, Lomaeva MG, Bezlepkin VG. 2006. Genomic instability detected by micronucleus test in F1 offspring exposed to ionizing radiation. Radiats Biol Radioecol. 46(4):431–435. Russian.
  • Goodman J, Copplestone D, Laptev GV, Gashchak S, Auld SR. 2019. Variation in chronic radiation exposure does not drive life history divergence among Daphnia populations across the Chernobyl Exclusion Zone. Ecol Evol. 9(5):2640–2650.
  • Grigorkina EB, Olenev GV. 2011. East Urals radioactive trace: adaptive strategy of rodents’ population. Radioprotection. 46(6):S437–S443.
  • Grigorkina EB, Olenev GV. 2018. Migrations of rodents in the zone of local radioactive contamination at different phases of population dynamics and their consequences. Biol Bull Russ Acad Sci. 45(1):110–118.
  • Horemans N, Spurgeon DJ, Lecomte-Pradines C, Saenen E, Bradshaw C, Oughton D, Rasnaca I, Kamstra JH, Adam-Guillermin C. 2019. Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. Environ. Pollut. 251:469–483.
  • Hornhardt S, Rößler U, Sauter W, Rosenberger A, Illig T, Bickeböller H, Wichmann H-E, Gomolka M. 2014. Genetic factors in individual radiation sensitivity. DNA Repair. 16:54–65.
  • Hosseini A, Brown JE, Evseeva T, Sazykina T, Oughton D, Bleykh E, Majstrenko T. 2011. Elaboration on a radiological environmental impact assessment methodology for Northern environments. Radioprotection. 46(6):S765–S770.
  • Jablonka E, Lamb MJ. 2008. Soft inheritance: challenging the modern synthesis. Genet Mol Biol. 31(2):389–395.
  • Karpenko NA, Lar’yanovskaya YB. 2012. Fertility of male rats irradiated in low doses and teratogenic effects in their offspring. Health Environ Issues. 1(31):125–130. Russian.
  • Kesäniemi J, Jernfors T, Lavrinienko A, Kivisaari K, Kiljunen M, Mappes T, Watts PC. 2019. Exposure to environmental radionuclides is associated with altered metabolic and immunity pathways in a wild rodent. Mol Ecol. 28(20):4620–4635.
  • Klaunig JE, Kamendulis LM. 2005. Mechanisms of acrylamide induced rodent carcinogenesis. In Friedman M, Mottram D. Chemistry and Safety of Acrylamide in Food. Adv Exp Med Biol. 561:49–62.
  • Kuznetsova EA, Zaichkina SI, Sirota NP, Abdullaev SA, Rozanova OM, Aptikaeva GF, Sorokina SS, Romanchenko SP, Smirnova EN. 2014. Induction of DNA damage in blood leucocytes and of cytogenetic injuries in bone marrow polychromatic erythrocytes in mice exposed to low let and high let radiation and in their progeny. Radiats Biol Radioecol. 54(4):341–349. Russian.
  • Leung CT, Yang Y, Yu KN, Tam N, Chan TF, Lin X, Kong RYC, Chiu JMY, Wong AST, Lui WY, et al. 2021. Low-dose radiation can cause epigenetic alterations associated with impairments in both male and female reproductive cells. Front Genet. 12:710143.
  • Malenchenko AF, Sushko SN, Saltanova IV. 2010. Interaction of radiative and nonradiative factors in the process of tumour formation. Int J Low Radiat. 7(3):188–1897.
  • Materiy LD, Maslova KI. 1984. The effect of increased natural radioactivity in the environment on the morphology of the bone marrow in Microtus oeconomus Pall. Radiobiology. 14(2):243. Russian.
  • Mazurik VK, Mikhajlov VF. 2001. Radiation-induced genome instability: the phenomenon, molecular mechanisms, pathogenetical significance. Radiat Biol Radioecol. 41(3):272–289. Russian.
  • Miousse IR, Kutanzi KR, Koturbash I. 2017. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol. 93(5):457–469.
  • Moiseev AA, Maslov VI, Testov BV. 1973. Dose loads on murine rodents inhabiting areas with increased natural radioactivity. Moscow. Russian.
  • Møller P, Knudsen LE, Loft S, Wallin H. 2000. The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev. 9(10):1005–1015.
  • Møller AP, Mousseau TA. 2016. Are organisms adapting to ionizing radiation at chernobyl? Trends Ecol Evol. 31(4):281–289.
  • Mothersill C, Andrej R, Colin S. 2017. Low doses and non-targeted effects in environmental radiation protection; where are we now and where should we go? Environ Res. 159:484–490.
  • Mousseau TA, Møller AP. 2014. Genetic and ecological studies of animals in chernobyl and Fukushima. J Heredity. 105(5):704–709.
  • Mousseau TA, Møller AP. 2020. Plants in the light of ionizing radiation: what have we learned from Chernobyl, Fukushima, and other "hot" places? Front. Front Plant Sci. 11:1–9.
  • Nefedov IY, Nefedova IY, Palyga GF. 2001. Genetic consequences of irradiation of one and both parents (results of experiments on Wistar rats). Radiat Biol Radioecol. 41(2):133–136. Russian.
  • Nomura T, Baleva LS, Ryo H, Adachi S, Sipyagina AE, Karakhan NM. 2017. Transgenerational effects of radiation on cancer and other disorders in mice and humans. J Radiat Cancer Res. 8(3):123–134.
  • O’Brien EA, Ensbey KS, Day BW, Baldock PA, Barry G. 2020. Direct evidence for transport of RNA from the mouse brain to the germline and offspring. BMC Biol. 18(1):45.
  • Olive PL, Banath JP. 1993. Induction and rejoining of radiation induced DNA single-strand breaks: “tail moment” as a function of position in the cell cycle. Mutat Res. 2949(3):275–283.
  • Palyga GF, Chibisova OF. 2006. Consequences for the offspring of two generations of irradiation of pregnant female Wistar rats in low doses during the period of laying the reproductive system of the fetus. Development of the second generation offspring and its reproductive function. Radiats Biol Radioecol. 46(4):494–497. Russian.
  • Paris L, Cordelli E, Eleuteri P, Grollino MG, Pasquali E, Ranaldi R, Meschini R, Pacchierotti F. 2011. Kinetics of gamma-H2AX induction and removal in bone marrow and testicular cells of mice after X-ray irradiation. Mutagenesis. 26(4):563–572.
  • Paris L, Giardullo P, Leonardi S, Tanno B, Meschini R, Cordelli E, Benassi B, Longobardi MG, Izzotti A, Pulliero A, et al.,. 2015. Transgenerational inheritance of enhanced susceptibility to radiation-induced medulloblastoma in newborn Ptch1± mice after paternal irradiation. Oncotarget. 6(34):36098–36112.
  • Paro JN, Zavisić BK. 2012. Iodine and thyroid gland with or without nuclear catastrophe. Med Pregl. 65(11–12):489–495.
  • Pavlov AV, Shashkina MV, Gansburgskiĭ MA, Korableva TV, Beliakov IE. 2006. Isolation of cells for cytological and cytogenetic studies of the thyroid epithelium. Morfologiia. 130(6):81–83. Russian.
  • Pomerantseva MD, Ramaiya LK, Rubanovich AV, Shevchenko VA. 2006. Genetic consequences of an increased radiation background at mouse-like rodents. Radiat Biol Radioecol. 46(3):279–286. Russian.
  • Prokopuk L, Western PS, Stringer JM. 2015. Transgenerational epigenetic inheritance: adaptation through the germline epigenome? Epigenomics. 7(5):829–846.
  • Pryakhin EA, Korytnyj VS, Akleev AV, Krupitskaya LI, Anisimova GG, Tolstykh EI, Tryapitsina GA. 2001. The analysis of DNA repair in bone marrow cells of mice under exposure to 90Sr. Radiats Biol Radioecol. 41(2):141–152.
  • Purschke M, Kasten-Pisula U, Brammer I, Dikomey E. 2004. Human and rodent cell lines showing no differences in the induction but differing in the repair kinetics of radiation-induced DNA base damage. Int J Radiat Biol. 80(1):29–38.
  • Rachkova NG, Shaposhnikova LM. 2020. Speciation of Radium-226 in the components of terrestrial and aqueous Northern Taiga ecosystems in a former radium production site. Geochem Int. 58(6):719–728.
  • Raskosha OV, Ermakova OV. 2013. Morphological state of thyroid gland of voles living in conditions of high of natural radioactivity. Theor Appl Ecology. 2:55–61. Russian.
  • Raskosha OV, Ermakova OV, Pavlov AV, Korableva TV. 2015. Morphometric and cytogenetic studies of the follicular epithelium thyroid of small mammals under chronic exposure to small doses. Radiat Biol Radioecol. 55(1):63–70. Russian.
  • Rubin P, Casarett GW. 1968. Clinical radiation pathology as applied to curative radiotherapy. Cancer. 22(4):767–780.
  • Salmon A, Zeise L. 1991. Risks of carcinogenesis from urethane exposure. Boca Raton: CRC Press.
  • Sarapultseva EI, Dubrova YE. 2016. The long-term effects of acute exposure to ionising radiation on survival and fertility in daphnia magna. Environ Res. 150:138–143.
  • Seong KM, Cenci G. 2022. Editorial: the genetic and epigenetic bases of cellular response to ionizing radiation. Front Genet. 4(857168):13.
  • Shaposhnikova LM, Shuktomova II. 2015. Consequences of radioactive decontamination by earthfill method in a former radium production site. Russ J Ecol. 46(3):299–302.
  • Sharma U, Sun F, Conine CC, Reichholf B, Kukreja S, Herzog VA, Ameres SL, Rando OJ. 2018. Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev Cell. 46(4):481–494.
  • Sheftel BI. 2018. Metods for estimating the Abundence of small mammals. Russian. J Ecosystem Ecology. 3(3):1–21. Russian.
  • Shevchenko OG, Zagorskaya NG, Kudyasheva AG, Shishkina LN. 2008. Dependence of response reaction of root voles to low-intensity irradiation on initial state of the tissue antioxidant system. J Evol Biochem Phys. 44(2):212–220.
  • Sirota NP, Kuznetsova EA. 2010. The application of comet assay in radiobiological studies. Radiats Biol Radioecol. 50(3):329–339. Russian.
  • Skinner MK, Manikkam M, Guerrero-Bosagna C. 2010. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 21(4):214–222.
  • Sorochinskaya JB, Mikhailenko VM. 2008. Application of the comet assay for the DNA damage assessment caused by different environmental agents. Oncology. 10(3):303–309.
  • Speit G, Vasquez M, Hartmann A. 2009. The comet assay as an indicator test for germ cell genotoxicity. Mutat Res. 681(1):3–12.
  • Szatmari T, Persa E, Kis E, Benedek A, Hargitai R, Safrany G, Lumniczky K. 2019. Extracellular vesicles mediate low dose ionizing radiation-induced immune and inflammatory responses in the blood. Int J Radiat Biol. 95(1):12–22.
  • Taskaev AI, Bashlykova LA, Zaynullin VG. 2010. Ecological and genetic monitoring of Muridae from populations undergone to the chronic irradiation. Radiat Biol Radioecol. 50(5):560–570. Russian.
  • Tronov VA. 1999. DNA repair and apoptosis. Tsitologiya. 41(5):405–410. Russian.
  • Tweats DJ, Blakey D, Heflich RH, Jacobs A, Jacobsen SD, Morita T, Nohmi T, O’Donovan MR, Sasaki YF, Sofuni T, et al. 2007. Report of the IWGT working group on strategy/interpretation for regulatory in vivo tests II. Identification of in vivo-only positive compounds in the bone marrow micronucleus test. Mutat Res. 627(1):92–105.
  • Vorobtsova IЕ. 2006. Transgenerational transmission of radiation induced genomic instability. Radiat Biol Radioecol. 46(4):441–446. Russian.
  • Wdowiak A, Skrzypek M, Stec M, Panasiuk L. 2019. Effect of ionizing radiation on the male reproductive system. Ann Agric Environ Med. 26(2):210–216.
  • Zhizhina GP. 2011. Effect of small doses of low-intensity ionizing radiation on the DNA structure and functions. Radiat Biol Radioecol. 51(2):218–228. Russian.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.