106
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Chemotherapy and cryopreservation affects DNA repair foci in lymphocytes of breast cancer patients

ORCID Icon, , , , , , , & show all
Pages 1660-1668 | Received 28 Feb 2022, Accepted 20 Apr 2023, Published online: 18 May 2023

References

  • Ahmed EA, Agay D, Schrock G, Drouet M, Meineke V, Scherthan H. 2012. Persistent DNA damage after high dose in vivo gamma exposure of minipig skin. PLoS One. 7(6):e39521.
  • Almacellas E, Pelletier J, Day C, Ambrosio S, Tauler A, Mauvezin C. 2021. Lysosomal degradation ensures accurate chromosomal segregation to prevent chromosomal instability. Autophagy. 17(3):796–813.
  • Baure J, Izadi A, Suarez V, Giedzinski E, Cleaver JE, Fike JR, Limoli CL. 2009. Histone H2AX phosphorylation in response to changes in chromatin structure induced by altered osmolarity. Mutagenesis. 24(2):161–167.
  • Belyaev IY. 2010. Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry [Research Support, Non-U.S. Gov’t Review]. Mutat Res. 704(1-3):132–141. eng.
  • Borras-Fresneda M, Barquinero JF, Gomolka M, Hornhardt S, Rossler U, Armengol G, Barrios L. 2016. Differences in DNA repair capacity, cell death and transcriptional response after irradiation between a radiosensitive and a radioresistant cell line. Sci Rep. 6:27043.
  • Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S, Senkus E. 2019. Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 30(10):1674.
  • Chua ML, Somaiah N, A'Hern R, Davies S, Gothard L, Yarnold J, Rothkamm K. 2011. Residual DNA and chromosomal damage in ex vivo irradiated blood lymphocytes correlated with late normal tissue response to breast radiotherapy. Radiother Oncol. 99(3):362–366.
  • Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG. 2009. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature. 458(7238):591–596.
  • Cox JD, Stetz J, Pajak TF. 1995. Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int J Radiat Oncol Biol Phys. 31(5):1341–1346.
  • CTCAE USDoHaHS. 2010. Common terminology criteria for adverse events v4.03. [accessed]. https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf.
  • De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. 2019. Radiotherapy toxicity. Nat Rev Dis Primers. 5(1):13.
  • Del Bo C, Fracassetti D, Lanti C, Porrini M, Riso P. 2015. Comparison of DNA damage by the comet assay in fresh versus cryopreserved peripheral blood mononuclear cells obtained following dietary intervention. Mutagenesis. 30(1):29–35.
  • Desoutter J, Ossart C, Lacassagne MN, Regnier A, Marolleau JP, Harrivel V. 2019. Cryopreservation and thawing of hematopoietic stem cell CD34-induced apoptosis through caspase pathway activation: key role of granulocytes. Cytotherapy. 21(6):612–618.
  • Ding D, Zhang Y, Wang J, Zhang X, Gao Y, Yin L, Li Q, Li J, Chen H. 2016. Induction and inhibition of the pan-nuclear gamma-H2AX response in resting human peripheral blood lymphocytes after X-ray irradiation. Cell Death Discov. 2:16011.
  • Djuzenova CS, Elsner I, Katzer A, Worschech E, Distel LV, Flentje M, Polat B. 2013. Radiosensitivity in breast cancer assessed by the histone gamma-H2AX and 53BP1 foci. Radiat Oncol. 8:98.
  • Durdik M, Kosik P, Gursky J, Vokalova L, Markova E, Belyaev I. 2015. Imaging flow cytometry as a sensitive tool to detect low-dose-induced DNA damage by analyzing 53BP1 and gammaH2AX foci in human lymphocytes. Cytometry A. 87(12):1070–1078.
  • Durdik M, Kosik P, Jakl L, Kozackova M, Markova E, Vigasova K, Beresova K, Jakubikova J, Horvathova E, Zastko L, et al. 2021. Imaging flow cytometry and fluorescence microscopy in assessing radiation response in lymphocytes from umbilical cord blood and cancer patients. Cytometry A. 99(12):1198–1208.
  • Durdik M, Kosik P, Kruzliakova J, Jakl L, Markova E, Belyaev I. 2017. Hematopoietic stem/progenitor cells are less prone to undergo apoptosis than lymphocytes despite similar DNA damage response. Oncotarget. 8(30):48846–48853.
  • Fenech M. 2007. Cytokinesis-block micronucleus cytome assay. Nat Protoc. 2(5):1084–1104.
  • Hamalisto S, Stahl JL, Favaro E, Yang Q, Liu B, Christoffersen L, Loos B, Guasch Boldu C, Joyce JA, Reinheckel T, et al. 2020. Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation. Nat Commun. 11(1):229.
  • Hart SP, Dransfield I, Rossi AG. 2008. Phagocytosis of apoptotic cells. Methods. 44(3):280–285.
  • Horn S, Rothkamm K. 2011. Candidate protein biomarkers as rapid indicators of radiation exposure. Radiat Meas. 46(9):903–906.
  • Ikeda M, Kurose A, Takatori E, Sugiyama T, Traganos F, Darzynkiewicz Z, Sawai T. 2010. DNA damage detected with gammaH2AX in endometrioid adenocarcinoma cell lines. Int J Oncol. 36(5):1081–1088.
  • Kim KM, Huh JY, Hong SS, Kang MS. 2015. Assessment of cell viability, early apoptosis, and hematopoietic potential in umbilical cord blood units after storage. Transfusion. 55(8):2017–2022.
  • Kim S, Jun DH, Kim HJ, Jeong KC, Lee CH. 2011. Development of a high-content screening method for chemicals modulating DNA damage response. J Biomol Screen. 16(2):259–265.
  • Krupina K, Goginashvili A, Cleveland DW. 2021. Causes and consequences of micronuclei. Curr Opin Cell Biol. 70:91–99.
  • Ladeira C, Koppen G, Scavone F, Giovannelli L. 2019. The comet assay for human biomonitoring: Effect of cryopreservation on DNA damage in different blood cell preparations. Mutat Res Genet Toxicol Environ Mutagen. 843:11–17.
  • Lobachevsky P, Leong T, Daly P, Smith J, Best N, Tomaszewski J, Thompson ER, Li N, Campbell IG, Martin RF, et al. 2016. Compromized DNA repair as a basis for identification of cancer radiotherapy patients with extreme radiosensitivity. Cancer Lett. 383(2):212–219.
  • Lorat Y, Fleckenstein J, Gorlinger P, Rube C, Rube CE. 2020. Assessment of DNA damage by 53PB1 and pKu70 detection in peripheral blood lymphocytes by immunofluorescence and high-resolution transmission electron microscopy. Strahlenther Onkol. 196(9):821–833.
  • Markova E, Schultz N, Belyaev IY. 2007. Kinetics and dose-response of residual 53BP1/gamma-H2AX foci: co-localization, relationship with DSB repair and clonogenic survival [Research Support, Non-U.S. Gov’t]. Int J Radiat Biol. 83(5):319–329.
  • Markova E, Somsedikova A, Vasilyev S, Pobijakova M, Lackova A, Lukacko P, Belyaev I. 2015. DNA repair foci and late apoptosis/necrosis in peripheral blood lymphocytes of breast cancer patients undergoing radiotherapy. Int J Radiat Biol. 91(12):934–945.
  • Markova E, Torudd J, Belyaev I. 2011. Long time persistence of residual 53BP1/gamma-H2AX foci in human lymphocytes in relationship to apoptosis, chromatin condensation and biological dosimetry. Int J Radiat Biol. 87(7):736–745.
  • Matthaios D, Hountis P, Karakitsos P, Bouros D, Kakolyris S. 2013. H2AX a promising biomarker for lung cancer: a review. Cancer Invest. 31(9):582–599.
  • Meneghel J, Kilbride P, Morris GJ. 2020. Cryopreservation as a key element in the successful delivery of cell-based therapies–a review. Front Med. 7:592242.
  • Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppe JP, Campeau E, Beausejour CM, Kim SH, et al. 2011. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci. 124(Pt 1):68–81.
  • Rogakou EP, Boon C, Redon C, Bonner WM 1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 146(5):905–916.
  • Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. 2015. DNA damage foci: Meaning and significance. Environ Mol Mutagen. 56(6):491–504.
  • Rube CE, Lorat Y, Schuler N, Schanz S, Wennemuth G, Rube C. 2011. DNA repair in the context of chromatin: new molecular insights by the nanoscale detection of DNA repair complexes using transmission electron microscopy. DNA Repair. 10(4):427–437.
  • Sanchez-Suarez P, Ostrosky-Wegman P, Gallegos-Hernandez F, Penarroja-Flores R, Toledo-Garcia J, Bravo JL, Del Castillo ER, Benitez-Bribiesca L. 2008. DNA damage in peripheral blood lymphocytes in patients during combined chemotherapy for breast cancer. Mutat Res. 640(1-2):8–15.
  • Schafer AK, Waterhouse M, Follo M, Duque-Afonso J, Duyster J, Bertz H, Finke J. 2020. Phenotypical and functional analysis of donor lymphocyte infusion products after long-term cryopreservation. Transfus Apher Sci. 59(1):102594.
  • Shimada M, Tsukada K, Kagawa N, Matsumoto Y. 2019. Reprogramming and differentiation-dependent transcriptional alteration of DNA damage response and apoptosis genes in human induced pluripotent stem cells. J Radiat Res. 60(6):719–728.
  • Siddiqui MS, Francois M, Fenech MF, Leifert WR. 2015. Persistent gammaH2AX: A promising molecular marker of DNA damage and aging. Mutat Res Rev Mutat Res. 766:1–19.
  • Sioen S, Cloet K, Vral A, Baeyens A. 2020. The cytokinesis-block micronucleus assay on human isolated fresh and cryopreserved peripheral blood mononuclear cells. J Pers Med. 10(3):125.
  • Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA. 2004. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64(7):2390–2396.
  • van Oorschot B, Hovingh SE, Rodermond H, Guclu A, Losekoot N, Geldof AA, Barendsen GW, Stalpers LJ, Franken NA. 2013. Decay of gamma-H2AX foci correlates with potentially lethal damage repair in prostate cancer cells. Oncol Rep. 29(6):2175–2180.
  • Verschoor CP, Kohli V, Balion C. 2018. A comprehensive assessment of immunophenotyping performed in cryopreserved peripheral whole blood. Cytometry B Clin Cytom. 94(5):662–670.
  • Yamauchi M, Oka Y, Yamamoto M, Niimura K, Uchida M, Kodama S, Watanabe M, Sekine I, Yamashita S, Suzuki K. 2008. Growth of persistent foci of DNA damage checkpoint factors is essential for amplification of G1 checkpoint signaling. DNA Repair. 7(3):405–417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.