166
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Structural study of wild-type and phospho-mimic XRCC4 dimer and multimer proteins using circular dichroism spectroscopy

, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1684-1691 | Received 02 Jun 2022, Accepted 05 May 2023, Published online: 01 Jun 2023

References

  • Amiri Moghani AR, Sharma MK, Matsumoto Y. 2018. In cellulo phosphorylation of DNA double-strand break repair protein XRCC4 on Ser260 by DNA-PK. J Radiat Res. 59:700–708.
  • Chaplin AK, Hardwick SW, Stavridi AK, Buehl CJ, Goff NJ, Ropars V, Liang S, De Oliveira TM, Chirgadze DY, Meek K, et al. 2021. Cryo-EM of NHEJ supercomplexes provides insights into DNA repair. Mol Cell. 81(16):3400–3409.e3.
  • Critchlow SE, Bowater RP, Jackson SP. 1997. Mammalian DNA double strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol. 7(8):588–598.
  • Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M, Lieber MR. 1997. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature. 388(6641):492–495.
  • Hammel M, Rey M, Yu Y, Mani RS, Classen S, Liu M, Pique ME, Fang S, Mahaney BL, Weinfeld M, et al. 2011. XRCC4 Protein Interactions with XRCC4-like Factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem. 286(37):32638–32650.
  • Hammel M, Yu Y, Fang S, Lees-Miller SP, Tainer JA. 2010. XLF Regulates filament architecture of the XRC-C4·ligase IV complex. Structure. 18(11):1431–1442.
  • Izumi Y, Fujii K, Wien F, Houée-Lévin C, Lacombe S, Salado-Leza D, Porcel E, Masoud R, Yamamoto Y, Réfrégiers R, et al. 2016. Structure change from β-strand and turn to α-helix in histone H2A-H2B induced by DNA damage response. Biophys J. 111(1):69–78.
  • Junop MS, Modesti M, Guarné A, Ghirlando R, Gellert M, Yang W. 2000. Crystal structure of the Xrcc4 DNA repair protein and implications for end joining. Embo J. 19(22):5962–5970.
  • Kalb VF, Jr, Bernlohr RW. 1977. A new spectrophotometric assay for protein in cell extracts. Anal Biochem. 82(2):362–371.
  • Kamdar RP, Matsumoto Y. 2010. Radiation-induced XRCC4 association with chromatin DNA analyzed by biochemical fractionation. JRR. 51(3):303–313.
  • Leber R, Wise TW, Mizuta R, Meek K. 1998. XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J Biol Chem. 273(3):1794–1801.
  • Lee KJ, Jovanovic M, Udayakumar D, Bladen CL, Dynan WS. 2004. Identification of DNA-PKcs phosphorylation sites in XRCC4 and effects of mutation at these sites on DNA end joining in a cell-free system. DNA Repair. 3(3):267–276.
  • Li Z, Otevrel T, Gao Y, Cheng HL, Seed B, Stamato TD, Taccioli GE, Alt FW. 1995. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell. 83(7):1079–1089.
  • Mahaney BL, Hammel M, Meek K, Tainer JA, Lees-Miller SP. 2013. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair. Biochem Cell Biol. 91(1):31–41.
  • Makin OS, Serpell LC. 2005. Structures for amyloid fibrils. Febs J. 272(23):5950–5961.
  • Mani RS, Yu Y, Fang S, Lu M, Fanta M, Zolner AE, Tahbaz N, Ramsden DA, Litchfield DW, Lees-Miller SP, et al. 2010. Dual modes of interaction between XRCC4 and polynucleotide kinase/phosphatase: implications for nonhomologous end joining. J Biol Chem. 285(48):37619–37629.
  • Matsumoto Y, Suzuki N, Namba N, Umeda N, Ma XJ, Morita A, Tomita M, Enomoto A, Serizawa S, Hirano K, et al. 2000. Cleavage and phosphorylation of XRCC4 protein induced by X-irradiation. FEBS Lett. 478(1–2):67–71.
  • Matsuo K, Gekko K. 2013. Construction of a synchrotron-radiation vacuum-ultraviolet circular-dichroism spectrophotometer and its application to the structural analysis of biomolecules. BCSJ. 86(6):675–689.
  • Matsuo K, Sakai K, Matsushima Y, Fukuyama T, Gekko K. 2003. Optical cell with a temperature-control unit for a vacuum-ultraviolet circular dichroism spectrophotometer. Anal Sci. 19(1):129–132.
  • Matsuo K, Yonehara R, Gekko K. 2004. Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem. 135(3):405–411.
  • Matsuo K, Yonehara R, Gekko K. 2005. Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J Biochem. 138(1):79–88.
  • McAfee JG, Edmondson SP, Zegar I, Shriver JW. 1996. Equilibrium DNA binding of Sac7d protein from the hyperthermophile sulfolobus acidocaldarius: fluorescence and circular dichroism studies. Biochem. 35(13):4034–4045.
  • Micsonai A, Bulyáki É, Kardos J. 2021. BeStSel: from secondary structure analysis to protein fold prediction by circular dichroism spectroscopy. Methods Mol Biol. 2199:175–189.
  • Micsonai A, Wien F, Bulyáki É, Kun J, Moussong É, Lee Y, Goto Y, Réfrégiers M, Kardos J. 2018. BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 46(W1):W315–W322.
  • Miles AJ, Wallace BA. 2006. Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem Soc Rev. 35(1):39–51.
  • Mizuta R, Cheng HL, Gao Y, Alt FW. 1997. Molecular genetic characterization of XRCC4 function. Int Immunol. 9(10):1607–1613.
  • Modesti M, Hesse JE, Gellert M. 1999. DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. Embo J. 18(7):2008–2018.
  • Nelson R, Eisenberg D. 2006. Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol. 16(2):260–265.
  • Nishikubo K, Izumi Y, Matsumoto Y, Fujii K, Matsuo K, Yokoya A. 2019. Structural analysis of DNA repair protein XRCC4 applying circular dichroism in an aqueous solution. Radiat Prot Dosimetry. 183(1-2):36–39.
  • Normanno D, Négrel A, Melo AJ, Betzi S, Meek K, Modesti M. 2017. Mutational phospho-mimicry reveals a regulatory role for the XRCC4 and XLF C-terminal tails in modulating DNA bridging during classical non-homologous end joining. Elife. 6:e22900.
  • Pannunzio NR, Watanabe G, Lieber MR. 2018. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem. 293(27):10512–10523.
  • Reid DA, Keegan S, Leo-Macias A, Watanabe G, Strande NT, Chang HH, Oksuz BA, Fenyo D, Lieber MR, Ramsden DA, et al. 2015. Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair. PNAS. 0112:E2575–84.
  • Ropars V, Drevet P, Legrand P, Baconnais S, Amram J, Faure G, Márquez JA, Piétrement O, Guerois R, Callebaut I, et al. 2011. Structural characterization of filaments formed by human XRCC4–cernunnos/XLF complex involved in nonhomologous DNA end-joining. Proc Natl Acad Sci U S A. 108(31):12663–12668.
  • Roy S, Melo AJ, Xu Y, Tadi SK, Négrel A, Hendrickson E, Modesti M, Meek K. 2015. XRCC4/XLF interaction is variably required for DNA repair and is not required for ligase IV stimulation. Mol Cell Biol. 35(17):3017–3028.
  • Schipler A, Iliakis G. 2013. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res. 41(16):7589–7605.
  • Sharma MK, Imamichi S, Fukuchi M, Samarth RM, Tomita M, Matsumoto Y. 2016. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage. J Radiat Res. 57(2):115–120.
  • Sibanda BL, Critchlow SE, Begun J, Pei XY, Jackson SP, Blundell TL, Pellegrini L. 2001. Crystal structure of an Xrcc4 − DNA ligase IV complex. Nat Struct Biol. 8(12):1015–1019.
  • Sreerama N, Venyaminov SY, Woody RW. 1999. Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy. Protein Sci. 8(2):370–380.
  • Sreerama N, Venyaminov SY, Woody RW. 2000. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 287(2):252–260.
  • Tsai CJ, Chu G. 2013. Cooperative assembly of a protein-DNA filament for nonhomologous End Joining. J Biol Chem. 288(25):18110–18120.
  • Wanotayan R, Fukuchi M, Imamichi S, Sharma MK, Matsumoto Y. 2015. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation. Biochem Biophys Res Commun. 457(4):526–531.
  • Yu Y, Wang W, Ding Q, Ye R, Chen D, Merkle D, Schriemer D, Meek K, Lees-Miller SP. 2003. DNA-PK phosphorylation sites in XRCC4 are not required for survival after radiation or for V(D)J recombination. DNA Repair. 2(11):1239–1252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.