145
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Interaction between astrocytes and neurons in simulated space radiation-induced CNS injury

, , , , , , & show all
Pages 1830-1840 | Received 18 Dec 2022, Accepted 26 May 2023, Published online: 12 Jul 2023

References

  • Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, et al. 2020. Fundamental biological features of spaceflight: Advancing the field to enable deep-space exploration. Cell. 183(5):1162–1184. doi:10.1016/j.cell.2020.10.050
  • Bisserier M, Saffran N, Brojakowska A, Sebastian A, Evans AC, Coleman MA, Walsh K, Mills PJ, Garikipati VNS, Arakelyan A, et al. 2022. Emerging role of exosomal long non-coding RNAs in spaceflight-associated risks in astronauts. Front Genet. 12:812188. doi:10.3389/fgene.2021.812188
  • Chancellor JC, Scott GBI, Sutton JP. 2014. Space radiation: the number one risk to astronaut health beyond low earth orbit. Life. 4(3):491–510. doi:10.3390/life4030491
  • Chen B, Zhang P, Sun F, Li B, Chen Y, Pei S, Zhang Z, Manzoor R, Deng Y, Sun C, et al. 2020. The mechanism of bystander effect induced by different irradiation in human neuroblastoma cells. Acta Astronaut. 166:599–606. doi:10.1016/j.actaastro.2018.12.005
  • Chen L, Huang E, Wang H, Qiu P, Liu C. 2013. Rna interference targeting α-synuclein attenuates methamphetamine-induced neurotoxicity in sh-sy5y cells. Brain Res. 1521:59–67. doi:10.1016/j.brainres.2013.05.016
  • Cucinotta FA. 2015. A new approach to reduce uncertainties in space radiation cancer risk predictions. PLOS One. 10(3):e0120717. doi:10.1371/journal.pone.0120717
  • Cucinotta FA, Alp M, Sulzman FM, Wang M. 2014. Space radiation risks to the central nervous system. Life Sci Space Res. 2:54–69. doi:10.1016/j.lssr.2014.06.003
  • Danilchik M, Tumarkin T. 2017. Exosomal trafficking in xenopus development. Genesis. 55(1–2):e23011. doi:10.1002/dvg.23011
  • Du L, Jiang Y, Sun Y. 2021. Astrocyte-derived exosomes carry microrna-17-5p to protect neonatal rats from hypoxic-ischemic brain damage via inhibiting bnip-2 expression. NeuroToxicology. 83:28–39. doi:10.1016/j.neuro.2020.12.006
  • Fu H, Su F, Zhu J, Zheng X, Ge C. 2020. Effect of simulated microgravity and ionizing radiation on expression profiles of mirna, lncrna, and mrna in human lymphoblastoid cells. Life Sci Space Res. 24:1–8. doi:10.1016/j.lssr.2019.10.009
  • Gao Y, Ma H, Lv C, Lan F, Wang Y, Deng Y. 2021. Exosomes and exosomal microrna in non-targeted radiation bystander and abscopal effects in the central nervous system. Cancer Lett. 499:73–84. doi:10.1016/j.canlet.2020.10.049
  • Goodwin TJ, Christofidou-Solomidou M. 2018. Oxidative stress and space biology: An organ-based approach. Int J Mol Sci. 19:959. doi:10.3390/ijms19040959
  • Ham S, Lima LG, Chai EPZ, Muller A, Lobb RJ, Krumeich S, Wen SW, Wiegmans AP, Möller A. 2018. Breast cancer-derived exosomes alter macrophage polarization via gp130/stat3 signaling. Front Immunol. 9:871. doi:10.3389/fimmu.2018.00871
  • Hamilton SA, Pecaut MJ, Gridley DS, Travis ND, Bandstra ER, Willey JS, Nelson G, Bateman TA. 2006. A murine model for bone loss from therapeutic and space-relevant sources of radiation. J Appl Physiol. 101(3):789–793. doi:10.1152/japplphysiol.01078.2005
  • Howitt J, Hill AF. 2016. Exosomes in the pathology of neurodegenerative diseases. J Biol Chem. 291(52):26589–26597. doi:10.1074/jbc.R116.757955
  • Iwata-Ichikawa E, Kondo Y, Miyazaki I, Asanuma M, Ogawa N. 1999. Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J Neurochem. 72(6):2334–2344.
  • Kadhim M, Tuncay Cagatay S, Elbakrawy EM. 2022. Non-targeted effects of radiation: A personal perspective on the role of exosomes in an evolving paradigm. Int J Radiat Biol. 98(3):410–420. doi:10.1080/09553002.2021.1980630
  • Kalluri R, LeBleu VS. 2020. The biology, function, and biomedical applications of exosomes. Science. 367(6478):eaau6977. doi:10.1126/science.aau6977
  • Laiakis EC, Shuryak I, Deziel A, Wang Y-W, Barnette BL, Yu Y, Ullrich RL, Fornace AJ, Emmett MR. 2021. Effects of low dose space radiation exposures on the splenic metabolome. Int J Mol Sci. 22:3070. doi:10.3390/ijms22063070
  • Lee H-J, Suk J-E, Patrick C, Bae E-J, Cho J-H, Rho S, Hwang D, Masliah E, Lee S-J. 2010. Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 285(12):9262–9272. doi:10.1074/jbc.M109.081125
  • Levy E. 2017. Exosomes in the diseased brain: first insights from in vivo studies. Front Neurosci. 11:142.
  • Linnerbauer M, Wheeler MA, Quintana FJ. 2020. Astrocyte crosstalk in CNS inflammation. Neuron. 108(4):608–622. doi:10.1016/j.neuron.2020.08.012
  • Mao S, Sun Q, Xiao H, Zhang C, Li L. 2015. Secreted miR-34a in astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons to neurotoxins by targeting Bcl-2. Protein Cell. 6(7):529–540. doi:10.1007/s13238-015-0168-y
  • McDonald MF, Hossain A, Momin EN, Hasan I, Adachi S, Gumin J, Ledbetter D, Singh SK, Daou M, Gopakumar S, et al. 2020. Engineered exosomes for anti-glioma microrna delivery in treatment of gbm. Neurosurgery. 67(Suppl 1). doi:10.1093/neuros/nyaa447_830
  • Meng Y, Ding J, Li C, Fan H, He Y, Qiu P. 2020. Transfer of pathological α-synuclein from neurons to astrocytes via exosomes causes inflammatory responses after meth exposure. Toxicol Lett. 331:188–199. doi:10.1016/j.toxlet.2020.06.016
  • Miyazaki I, Asanuma M. 2020. Neuron-astrocyte interactions in Parkinson’s disease. Cells. 9(12):2623. doi:10.3390/cells9122623
  • Newman EA. 2003. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26(10):536–542. doi:10.1016/S0166-2236(03)00237-6
  • Parihar VK, Allen BD, Tran KK, Chmielewski NN, Craver BM, Martirosian V, Morganti JM, Rosi S, Vlkolinsky R, Acharya MM, et al. 2015. Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction. Antioxid Redox Signal. 22(1):78–91. doi:10.1089/ars.2014.5929
  • Patzig J, Dworschak MS, Martens A-K, Werner HB. 2014. Septins in the glial cells of the nervous system. Biol Chem. 395(2):143–149. doi:10.1515/hsz-2013-0240
  • Pei X, Li Y, Zhu L, Zhou Z. 2019. Astrocyte-derived exosomes suppress autophagy and ameliorate neuronal damage in experimental ischemic stroke. Exp Cell Res. 382(2):111474. doi:10.1016/j.yexcr.2019.06.019
  • Pei X, Li Y, Zhu L, Zhou Z. 2020. Astrocyte-derived exosomes transfer mir-190b to inhibit oxygen and glucose deprivation-induced autophagy and neuronal apoptosis. Cell Cycle. 19(8):906–917. doi:10.1080/15384101.2020.1731649
  • Quek C, Hill AF. 2017. The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun. 483(4):1178–1186. doi:10.1016/j.bbrc.2016.09.090
  • Saeed Y, Rehman A, Xie B, Xu J, Hong M, Hong Q, Deng Y. 2015. Astroglial u87 cells protect neuronal SH-SY5Y cells from indirect effect of radiation by reducing DNA damage and inhibiting FAS mediated apoptotic pathway in coculture system. Neurochem Res. 40(8):1644–1654. doi:10.1007/s11064-015-1642-x
  • Saeed Y, Xie B, Xu J, Rehman A, Hong M, Hong Q, Deng Y. 2015. Glial u87 cells protect neuronal SH-SY5Y cells from indirect effect of radiation by reducing oxidative stress and apoptosis. Acta Biochim Biophys Sin. 47(4):250–257. doi:10.1093/abbs/gmv004
  • Samuelson I, Vidal-Puig AJ. 2018. Fed-exosome: Extracellular vesicles and cell–cell communication in metabolic regulation. Essays Biochem. 62(2):165–175.
  • Sanchez MC, Nelson GA, Green LM. 2010. Effects of protons and HZE particles on glutamate transport in astrocytes, neurons and mixed cultures. Radiat Res. 174(6):669–678. doi:10.1667/RR2106.1
  • Schorey JS, Bhatnagar S. 2008. Exosome function: from tumor immunology to pathogen biology. Traffic. 9(6):871–881. doi:10.1111/j.1600-0854.2008.00734.x
  • Syková E, Nicholson C. 2008. Diffusion in brain extracellular space. Physiol Rev. 88(4):1277–1340. doi:10.1152/physrev.00027.2007
  • Takuma K, Baba A, Matsuda T. 2004. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol. 72(2):111–127. doi:10.1016/j.pneurobio.2004.02.001
  • Tian T, Zhu Y-L, Hu F-H, Wang Y-Y, Huang N-P, Xiao Z-D. 2013. Dynamics of exosome internalization and trafficking. J Cell Physiol. 228(7):1487–1495. doi:10.1002/jcp.24304
  • Tofilon PJ, Fike JR. 2000. The radioresponse of the central nervous system: a dynamic process. Radiat Res. 153(4):357–370. doi:10.1667/0033-7587(2000)153[0357:TROTCN]2.0.CO;2
  • Wen SW, Lima LG, Lobb RJ, Norris EL, Hastie ML, Krumeich S, Möller A. 2019. Breast cancer‐derived exosomes reflect the cell‐of‐origin phenotype. Proteomics. 19(8):1800180. doi:10.1002/pmic.201800180
  • Xin N, Li Y-J, Li X, Wang X, Li Y, Zhang X, Dai R-J, Meng W-W, Wang H-L, Ma H, et al. 2012. Dragon’s blood may have radioprotective effects in radiation-induced rat brain injury. Radiat Res. 178(1):75–85. doi:10.1667/RR2739.1
  • Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, Larcher LM, Chen S, Liu N, Zhao Q, et al. 2020. Progress, opportunity, and perspective on exosome isolation – efforts for efficient exosome-based theranostics. Theranostics. 10(8):3684–3707. doi:10.7150/thno.41580
  • Zhang C, Dan Q, Lai S, Zhang Y, Gao E, Luo H, Yang L, Gao X, Lu C. 2022. Rab10 protects against dox-induced cardiotoxicity by alleviating the oxidative stress and apoptosis of cardiomyocytes. Toxicol Lett. 373:84–93.
  • Zhang P, Chen Y, Zhu H, Yan L, Sun C, Pei S, Lodhi AF, Ren H, Gao Y, Manzoor R, et al. 2019. The effect of gamma-ray-induced central nervous system injury on peripheral immune response: an in vitro and in vivo study. Radiat Res. 192(4):440–450. doi:10.1667/RR15378.1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.