667
Views
0
CrossRef citations to date
0
Altmetric
Review

Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance?

ORCID Icon & ORCID Icon
Pages 1803-1829 | Received 09 Jan 2023, Accepted 08 Jul 2023, Published online: 07 Aug 2023

References

  • Abreu IA, Hearn A, An H, Nick HS, Silverman DN, Cabelli DE. 2008. The kinetic mechanism of manganese-containing superoxide dismutase from Deinococcus radiodurans: a specialized enzyme for the elimination of high superoxide concentrations. Biochemistry. 47(8):2350–2356. doi:10.1021/bi7016206
  • Achilli C, Ciana A, Minetti G. 2015. The discovery of methionine sulfoxide reductase enzymes: an historical account and future perspectives. Biofactors. 41(3):135–152. doi:10.1002/biof.1214
  • Appukuttan D, Singh H, Park SH, Jung JH, Jeong S, Seo HS, Choi YJ, Lim S. 2016. Engineering synthetic multistress tolerance in Escherichia coli by using a deinococcal response regulator DR1558. Appl Environ Microbiol. 82(4):1154–1166. doi:10.1128/AEM.03371-15
  • Alegria TGP, Meireles DA, Cussiol JRR, Hugo M, Trujillo M, de Oliveira MA, Miyamoto S, Queiroz RF, Valadares NF, Garratt RC, et al. 2017. Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite. Proc Natl Acad Sci U S A. 114(2):E132–E141. doi:10.1073/pnas.1619659114
  • Anderson AW, Nordon HC, Cain RF, Parrish G, Duggan D. 1956. Studies on a radio-resistant micrococcus. I. Isolation morphology cultural characteristics and resistance to gamma radiation. Food Technol. 10:575–578.
  • Anderson ES, Paulley JT, Gaines JM, Valderas MW, Martin DW, Menscher E, Brown TD, Burns CS, Roop RM. 2nd. 2009. The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun. 77(8):3466–3474. doi:10.1128/IAI.00444-09
  • Andreeva N, Ryazanova L, Dmitriev V, Kulakovskaya T, Kulaev I. 2013. Adaptation of Saccharomyces cerevisiae to toxic manganese concentration triggers changes in inorganic polyphosphates. FEMS Yeast Res. 13(5):463–470. doi:10.1111/1567-1364.12049
  • Appukuttan D, Seo HS, Jeong S, Im S, Joe M, Song D, Choi J, Lim S. 2015. Expression and mutational analysis of DinB-like protein DR0053 in Deinococcus radiodurans. PLoS One. 10(2):e0118275. doi:10.1371/journal.pone.0118275
  • Archibald FS, Fridovich I. 1981a. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J Bacteriol. 145(1):442–451. doi:10.1128/jb.145.1.442-451.1981
  • Archibald FS, Fridovich I. 1981b. Manganese superoxide dismutase and oxygen tolerance in some lactic acid bacteria. J Bacteriol. 146(3):928–936. doi:10.1128/jb.146.3.928-936.1981
  • Argyrou A, Blanchard JS. 2004. Flavoprotein disulfide reductases: advances in chemistry and function. Prog Nucleic Acid Res Mol Biol. 78:89–142.
  • Arts IS, Vertommen D, Baldin F, Laloux G, Collet JF. 2016. Comprehensively characterizing the thioredoxin interactome in vivo highlights the central role played by this ubiquitous oxidoreductase in redox control. Mol Cell Proteomics. 15(6):2125–2140. doi:10.1074/mcp.M115.056440
  • Audet R. 1976. The Oklo nuclear reactors: 1800 million years ago. Ming Studies. 1976(1):72–84. doi:10.1179/mng.1976.1976.1.72
  • Baldodiya GM. 2021. The journey of Deinococcus radiodurans; a perspective. CBIOT. 10(3):153–157. doi:10.2174/2211550111666211217153055
  • Basu B, Apte SK. 2012. Gamma radiation-induced proteome of Deinococcus radiodurans primarily targets DNA repair and oxidative stress alleviation. Mol Cell Proteomics. 11(1):M111.011734. doi:10.1074/mcp.M111.011734
  • Battista JR. 1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol. 51:203–224. doi:10.1146/annurev.micro.51.1.203
  • Battista JR, Earl AM, Park MJ. 1999. Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol. 7(9):362–365. doi:10.1016/s0966-842x(99)01566-8
  • Battista JR, Park MJ, McLemore AE. 2001. Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology. 43(2):133–139. doi:10.1006/cryo.2001.2357
  • Baumeister W, Barth M, Hegerl R, Guckenberger R, Hahn M, Saxton WO. 1986. Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J Mol Biol. 187(2):241–250. doi:10.1016/0022-2836(86)90231-7
  • Bentchikou E, Servant P, Coste G, Sommer S. 2010. A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans. PLoS Genet. 6(1):e1000774. doi:10.1371/journal.pgen.1000774
  • Berlett BS, Levine RL. 2014. Designing antioxidant peptides. Redox Rep. 19(2):80–86. doi:10.1179/1351000213Y.0000000078
  • Blanchard L, Guérin P, Roche D, Cruveiller S, Pignol D, Vallenet D, Armengaud J, de Groot A. 2017. Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. Microbiol Open. 6(4):e00477. doi:10.1002/mbo3.477
  • Blasius M, Hübscher U, Sommer S. 2008. Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol Biol. 43(3):221–238. doi:10.1080/10409230802122274
  • Brooks BW, Murray RGE. 1981. Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Evol Microbiol. 31(3):353–360.
  • Bruch EM, Thomine S, Tabares LC, Un S. 2015. Variations in Mn(II) speciation among organisms: what makes D. radiodurans different. Metallomics. 7(1):136–144. doi:10.1039/c4mt00265b
  • Bruckbauer ST, Cox MM. 2021. Experimental evolution of extremophile resistance to ionizing radiation. Trends Genet. 37(9):830–845. doi:10.1016/j.tig.2021.04.011
  • Bruskov VI, Malakhova LV, Masalimov ZK, Chernikov AV. 2002. Heat-induced formation of reactive oxygen species and 8-oxoguanine a biomarker of damage to DNA. Nucleic Acids Res. 30(6):1354–1363. doi:10.1093/nar/30.6.1354
  • Bryk R, Lima CD, Erdjument-Bromage H, Tempst P, Nathan C. 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science. 295(5557):1073–1077. doi:10.1126/science.1067798
  • Burrell AD, Feldschreiber P, Dean CJ. 1971. DNA-membrane association and the repair of double breaks in X-irradiated Micrococcus radiodurans. Biochim Biophys Acta. 247(1):38–53. doi:10.1016/0005-2787(71)90805-7
  • Cai J, Pan C, Zhao Y, Xu H, Tian B, Wang L, Hua Y. 2021. DRJAMM is involved in the oxidative resistance in Deinococcus radiodurans. Front Microbiol. 12:756867. doi:10.3389/fmicb.2021.756867
  • Carbonneau MA, Melin AM, Perromat A, Clerc M. 1989. The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys. 275(1):244–251. doi:10.1016/0003-9861(89)90370-6
  • Castillo H, Li X, Smith GB. 2021. Deinococcus radiodurans UWO298 dependence on background radiation for optimal growth. Front Genet. 12:644292. doi:10.3389/fgene.2021.644292
  • Ceci P, Ilari A, Falvo E, Chiancone E. 2003. The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage: x-ray crystal structure iron binding and hydroxyl-radical scavenging properties. J Biol Chem. 278(22):20319–20326. doi:10.1074/jbc.M302114200
  • Chandrangsu P, Loi VV, Antelmann H, Helmann JD. 2018. The role of bacillithiol in Gram-positive Firmicutes. Antioxid Redox Signal. 28(6):445–462. doi:10.1089/ars.2017.7057
  • Chen H, Wu R, Xu G, Fang X, Qiu X, Guo H, Tian B, Hua Y. 2010. DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans. Biochem Biophys Res Commun. 396(2):413–418. doi:10.1016/j.bbrc.2010.04.106
  • Chen H, Xu G, Zhao Y, Tian B, Lu H, Yu X, Xu Z, Ying N, Hu S, Hua Y. 2008. A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans. PLoS One. 3(2):e1602. doi:10.1371/journal.pone.0001602
  • Chen Z, Tang Y, Hua Y, Zhao Y. 2020. Structural features and functional implications of proteins enabling the robustness of Deinococcus radiodurans. Comput Struct Biotechnol J. 18:2810–2817. doi:10.1016/j.csbj.2020.09.036
  • Chen Y, Zhao M, Lv M, Lin M, Wang J, Zuo K. 2022. A novel small RNA, DsrO, in Deinococcus radiodurans promotes methionine sulfoxide reductase (msrA) expression for oxidative stress adaptation. Appl Environ Microbiol. 88(11):e0003822. doi:10.1128/aem.00038-22
  • Cheton PL, Archibald FS. 1988. Manganese complexes and the generation and scavenging of hydroxyl free radicals. Free Radic Biol Med. 5(5–6):325–333. doi:10.1016/0891-5849(88)90104-9
  • Cho C, Lee GW, Hong SH, Kaur S, Jung KW, Jung JH, Lim S, Chung BY, Lee SS. 2019. Novel functions of peroxiredoxin Q from Deinococcus radiodurans R1 as a peroxidase and a molecular chaperone. FEBS Lett. 593(2):219–229. doi:10.1002/1873-3468.13302
  • Christensen EA, Kristensen H. 1981. Radiation-resistance of micro-organisms from air in clean premises. Acta Pathol Microbiol Scand B. 189(5):293–301.
  • Cordell GA, Daley SK. 2022. Pyrroloquinoline quinone chemistry, biology, and biosynthesis. Chem Res Toxicol. 35(3):355–377. doi:10.1021/acs.chemrestox.1c00340
  • Cox MM, Battista JR. 2005. Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol. 3(11):882–892. doi:10.1038/nrmicro1264
  • Crow A, Lewin A, Hecht O, Carlsson Möller M, Moore GR, Hederstedt L, Le Brun NE. 2009. Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site. J Biol Chem. 284(35):23719–23733. doi:10.1074/jbc.M109.005785
  • Cui G, Xian X, Liu Y, Dai Q, Chen M, Wang J. 2013. Construction and functional analysis of osmC gene disruptant and ohr gene disruptant in Deinococcus radiodurans R1. Adv. Microbiol. 2:109–115.
  • Cuypers MG, Mitchell EP, Romão CV, McSweeney SM. 2007. The crystal structure of the Dps2 from Deinococcus radiodurans reveals an unusual pore profile with a non-specific metal binding site. J Mol Biol. 371(3):787–799. doi:10.1016/j.jmb.2006.11.032
  • Dahl JU, Gray MJ, Jakob U. 2015. Protein quality control under oxidative stress conditions. J Mol Biol. 427(7):1549–1563. doi:10.1016/j.jmb.2015.02.014
  • Dai J, Gao K, Yao T, Lu H, Zhou C, Guo M, Dai S, Wang L, Xu H, Tian B, et al. 2020. Late embryogenesis abundant group 3 protein (DrLEA3) is involved in antioxidation in the extremophilic bacterium Deinococcus radiodurans. Microbiol Res. 240:126559. doi:10.1016/j.micres.2020.126559
  • Dai S, Xie Z, Wang B, Yu N, Zhao J, Zhou Y, Hua Y, Tian B. 2021. Dynamic polyphosphate metabolism coordinating with manganese ions defends against oxidative stress in the extreme bacterium Deinococcus radiodurans. Appl Environ Microbiol. 87(7):e02785-20. doi:10.1128/AEM.02785-20
  • Daly MJ. 2009. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol. 7(3):237–245. doi:10.1038/nrmicro2073
  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, et al. 2004. Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science. 306(5698):1025–1028. doi:10.1126/science.1103185
  • Daly MJ, Gaidamakova EK, Matrosova VY, Kiang JG, Fukumoto R, Lee DY, Wehr NB, Viteri GA, Berlett BS, Levine RL. 2010. Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS One. 5(9):e12570. doi:10.1371/journal.pone.0012570
  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SM, Kemner KM, et al. 2007. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 5(4):e92. doi:10.1371/journal.pbio.0050092
  • Daly MJ, Minton KW. 1995. Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 177(19):5495–5505. doi:10.1128/jb.177.19.5495-5505.1995
  • Daly MJ, Ouyang L, Fuchs P, Minton KW. 1994. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol. 176(12):3508–3517. doi:10.1128/jb.176.12.3508-3517.1994
  • Day AM, Brown JD, Taylor SR, Rand JD, Morgan BA, Veal EA. 2012. Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol Cell. 45(3):398–408. doi:10.1016/j.molcel.2011.11.027
  • de Groot A, Blanchard L, Rouhier N, Rey P. 2022. Thiol reductases in Deinococcus bacteria and roles in stress tolerance. Antioxidants. 11(3):561. doi:10.3390/antiox11030561
  • de Groot A, Dulermo R, Ortet P, Blanchard L, Guérin P, Fernandez B, Vacherie B, Dossat C, Jolivet E, Siguier P, et al. 2009. Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet. 5(3):e1000434. doi:10.1371/journal.pgen.1000434
  • Dennis RJ, Micossi E, McCarthy J, Moe E, Gordon EJ, Kozielski-Stuhrmann S, Leonard GA, McSweeney S. 2006. Structure of the manganese superoxide dismutase from Deinococcus radiodurans in two crystal forms. Acta Crystallogr Sect F Struct Biol Cryst Commun. 62(Pt 4):325–329. doi:10.1107/S1744309106008402
  • Devigne A, Ithurbide S, Bouthier de la Tour C, Passot F, Mathieu M, Sommer S, Servant P. 2015. DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium. Mol Microbiol. 96(5):1069–1084. doi:10.1111/mmi.12991
  • Dickerhof N, Paton L, Kettle AJ. 2020. Oxidation of bacillithiol by myeloperoxidase-derived oxidants. Free Radic Biol Med. 158:74–83. doi:10.1016/j.freeradbiomed.2020.06.009
  • Dizdaroglu M, Jaruga P. 2012. Mechanisms of free radical-induced damage to DNA. Free Radic Res. 46(4):382–419. doi:10.3109/10715762.2011.653969
  • Drazic A, Winter J. 2014. The physiological role of reversible methionine oxidation. Biochim Biophys Acta. 1844(8):1367–1382. doi:10.1016/j.bbapap.2014.01.001
  • Dubbs JM, Mongkolsuk S. 2012. Peroxide-sensing transcriptional regulators in bacteria. J Bacteriol. 194(20):5495–5503. doi:10.1128/JB.00304-12
  • Duggan DE, Anderson AW, Elliker PR. 1963. Inactivation of the radiation-resistant spoilage bacterium Micrococcus radiodurans. I. Radiation inactivation rates in three meat substrates and in buffer. Appl Microbiol. 11(5):398–403. doi:10.1128/am.11.5.398-403.1963
  • Dulermo R, Onodera T, Coste G, Passot F, Dutertre M, Porteron M, Confalonieri F, Sommer S, Pasternak C. 2015. Identification of new genes contributing to the extreme radioresistance of Deinococcus radiodurans using a Tn5-based transposon mutant library. PLoS One. 10(4):e0124358. doi:10.1371/journal.pone.0124358
  • Earl AM, Mohundro MM, Mian IS, Battista JR. 2002. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J Bacteriol. 184(22):6216–6224. doi:10.1128/JB.184.22.6216-6224.2002
  • Englander J, Klein E, Brumfeld V, Sharma AK, Doherty AJ, Minsky A. 2004. DNA toroids: framework for DNA repair in Deinococcus radiodurans and in germinating bacterial spores. J Bacteriol. 186(18):5973–5977. doi:10.1128/JB.186.18.5973-5977.2004
  • Espinosa B, Arnér ESJ. 2019. Thioredoxin-related protein of 14 kDa as a modulator of redox signalling pathways. Br J Pharmacol. 176(4):544–553. doi:10.1111/bph.14479
  • Eugénie N, Zivanovic Y, Lelandais G, Coste G, Bouthier de la Tour C, Bentchikou E, Servant P, Confalonieri F. 2021. Characterization of the radiation desiccation response regulon of the radioresistant bacterium Deinococcus radiodurans by integrative genomic analyses. Cells. 10(10):2536. doi:10.3390/cells10102536
  • Ezraty B, Gennaris A, Barras F, Collet JF. 2017. Oxidative stress protein damage and repair in bacteria. Nat Rev Microbiol. 15(7):385–396. doi:10.1038/nrmicro.2017.26
  • Farci D, Bowler MW, Kirkpatrick J, McSweeney S, Tramontano E, Piano D. 2014. New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Biochim Biophys Acta. 1838(7):1978–1984. doi:10.1016/j.bbamem.2014.02.014
  • Farci D, Haniewicz P, de Sanctis D, Iesu L, Kereïche S, Winterhalter M, Piano D. 2022. The cryo-EM structure of the S-layer deinoxanthin-binding complex of Deinococcus radiodurans informs properties of its environmental interactions. J Biol Chem. 298(6):102031. doi:10.1016/j.jbc.2022.102031
  • Farci D, Kereïche S, Pangeni S, Haniewicz P, Bodrenko IV, Ceccarelli M, Winterhalter M, Piano D. 2021. Structural analysis of the architecture and in situ localization of the main S-layer complex in Deinococcus radiodurans. Structure. 29(11):1279–1285.e3. doi:10.1016/j.str.2021.06.014
  • Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, da Costa MS. 1997. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov. two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol. 47(4):939–947. doi:10.1099/00207713-47-4-939
  • Fillat MF. 2014. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys. 546:41–52. doi:10.1016/j.abb.2014.01.029
  • Forster JC, Douglass MJJ, Phillips WM, Bezak E. 2018. Monte Carlo simulation of the oxygen effect in DNA damage induction by ionizing radiation. Radiat Res. 190(3):248–261. doi:10.1667/RR15050.1
  • Fredrickson JK, Li SM, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ. 2008. Protein oxidation: key to bacterial desiccation resistance? 2(4):393–403. doi:10.1038/ismej.2007.116
  • Fredrickson JK, Zachara JM, Balkwill DL, Kennedy D, Li SM, Kostandarithes HM, Daly MJ, Romine MF, Brockman FJ. 2004. Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site Washington state. Appl Environ Microbiol. 70(7):4230–4241. doi:10.1128/AEM.70.7.4230-4241.2004
  • Fu X, Adams Z, Liu R, Hepowit NL, Wu Y, Bowmann CF, Moskovitz J, Maupin-Furlow JA. 2017. Methionine sulfoxide reductase A (MsrA) and its function in ubiquitin-like protein modification in Archaea. mBio. 8:e01169-17. doi:10.1128/mBio.01169-17
  • Gaballa A, Newton GL, Antelmann H, Parsonage D, Upton H, Rawat M, Claiborne A, Fahey RC, Helmann JD. 2010. Biosynthesis and functions of bacillithiol a major low-molecular-weight thiol in Bacilli. Proc Natl Acad Sci U S A. 107(14):6482–6486. doi:10.1073/pnas.1000928107
  • Gaballa A, Su TT, Helmann JD. 2021. The Bacillus subtilis monothiol bacilliredoxin BrxC (YtxJ) and the Bdr (YpdA) disulfide reductase reduce S-bacillithiolated proteins. Redox Biol. 42:101935. doi:10.1016/j.redox.2021.101935
  • Gaidamakova EK, Sharma A, Matrosova VY, Grichenko O, Volpe RP, Tkavc R, Conze IH, Klimenkova P, Balygina I, Horne WH, et al. 2022. Small-molecule Mn antioxidants in Caenorhabditis elegans and Deinococcus radiodurans supplant MnSOD enzymes during aging and irradiation. mBio. 13(1):e0339421. doi:10.1128/mbio.03394-21
  • Gérard E, Jolivet E, Prieur D, Forterre P. 2001. DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol Genet Genomics. 266(1):72–78. doi:10.1007/s004380100520
  • Ghosal D, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Venkateswaran A, Zhai M, Kostandarithes HM, Brim H, Makarova KS, et al. 2005. How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol Rev. 29(2):361–375.
  • Gogada R, Singh SS, Lunavat SK, Pamarthi MM, Rodrigue A, Vadivelu B, Phanithi PB, Gopala V, Apte SK. 2015. Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors. Appl Microbiol Biotechnol. 99(21):9203–9213. doi:10.1007/s00253-015-6761-4
  • Goulding CW, Apostol MI, Gleiter S, Parseghian A, Bardwell J, Gennaro M, Eisenberg D. 2004. Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis. J Biol Chem. 279(5):3516–3524. doi:10.1074/jbc.M311833200
  • Gray MJ, Jakob U. 2015. Oxidative stress protection by polyphosphate - new roles for an old player. Curr Opin Microbiol. 24:1–6. doi:10.1016/j.mib.2014.12.004
  • Gray MJ, Wholey WY, Wagner NO, Cremers CM, Mueller-Schickert A, Hock NT, Krieger AG, Smith EM, Bender RA, Bardwell JC, et al. 2014. Polyphosphate is a primordial chaperone. Mol Cell. 2014(5):689–699.
  • Grimaud R, Ezraty B, Mitchell JK, Lafitte D, Briand C, Derrick PJ, Barras F. 2001. Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J Biol Chem. 276(52):48915–48920. doi:10.1074/jbc.M105509200
  • Halliwell B, Gutteridge JMC. 1999. Free radicals in biology and medicine. 3rd ed. Oxford; New York: Oxford University Press; p. 55–60.
  • Hammerstad M, Hersleth H-P. 2021. Overview of structurally homologous flavoprotein oxidoreductases containing the low Mr thioredoxin reductase-like fold—a functionally diverse group. Arch Biochem Biophys. 702:108826. doi:10.1016/j.abb.2021.108826
  • Han R, Jiang J, Fang J, Contreras LM. 2022. PNPase and RhlB interact and reduce the cellular availability of oxidized RNA in Deinococcus radiodurans. Microbiol Spectr. 10(4):e0214022. doi:10.1128/spectrum.02140-22
  • Hansen MT. 1978. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol. 134(1):71–75. doi:10.1128/jb.134.1.71-75.1978
  • Hansler A, Chen Q, Ma Y, Gross SS. 2016. Untargeted metabolite profiling reveals that nitric oxide biosynthesis is an endogenous modulator of carotenoid biosynthesis in Deinococcus radiodurans and is required for extreme ionizing radiation resistance. Arch Biochem Biophys. 589:38–52. doi:10.1016/j.abb.2015.10.010
  • Harsojo KS, Matsuyama A. 1981. Genome multiplicity and radiation resistance in Micrococcus radiodurans. J Biochem. 90(3):877–880. doi:10.1093/oxfordjournals.jbchem.a133544
  • Helmann JD. 2011. Bacillithiol, a new player in bacterial redox homeostasis. Antioxid Redox Signal. 15(1):123–133. doi:10.1089/ars.2010.3562
  • Heras B, Shouldice SR, Totsika M, Scanlon MJ, Schembri MA, Martin JL. 2009. DSB proteins and bacterial pathogenicity. Nat Rev Microbiol. 7(3):215–225. doi:10.1038/nrmicro2087
  • Hess M. 2003. Analysis of Deinococcus radiodurans mutants [diploma thesis]. Konstanz: University of Konstanz.
  • Hillas PJ, del Alba FS, Oyarzabal J, Wilks A, Ortiz De Montellano PR. 2000. The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J Biol Chem. 275(25):18801–18809. doi:10.1074/jbc.M001001200
  • Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R, Schumann P, Stackebrandt E, Anderson R. 2004. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol. 27(6):636–645. doi:10.1078/0723202042370008
  • Hlavaty JJ, Benner J, Hornstra LJ, Schildkraut I. 2000. Identification of the metal-binding sites of restriction endonucleases by Fe2+-mediated oxidative cleavage. Biochemistry. 39(11):3097–3105. doi:10.1021/bi992268c
  • Hong E-J, Jeong H, Lee D-S, Kim Y, Lee H-S. 2019. The ahpD gene of Corynebacterium glutamicum plays an important role in hydrogen peroxide-induced oxidative stress response. J Biochem. 165(2):197–204. doi:10.1093/jb/mvy097
  • Hua Y, Narumi I, Gao G, Tian B, Satoh K, Kitayama S, Shen B. 2003. PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun. 306(2):354–360. doi:10.1016/s0006-291x(03)00965-3
  • Hua X, Hua Y. 2016. Improved complete genome sequence of the extremely radioresistant bacterium Deinococcus radiodurans R1 obtained using PacBio single-molecule sequencing. Genome Announc. 4(5):e00886-16. doi:10.1128/genomeA.00886-16
  • Imber M, Pietrzyk-Brzezinska AJ, Antelmann H. 2019. Redox regulation by reversible protein S-thiolation in Gram-positive bacteria. Redox Biol. 20:130–145. doi:10.1016/j.redox.2018.08.017
  • Imlay JA. 2003. Pathways of oxidative damage. Annu Rev Microbiol. 57:395–418. doi:10.1146/annurev.micro.57.030502.090938
  • Imlay JA. 2015. Transcription factors that defend bacteria against reactive oxygen species. Annu Rev Microbiol. 69:93–108. doi:10.1146/annurev-micro-091014-104322
  • Ito H, Watanabe H, Takehisa M, Iizuka H. 1983. Isolation and identification of radiation-resistant cocci belonging to the genus Deinococcus from sewage sludges and animal feeds. Agric Biol Chem. 47(6):1239–1247. doi:10.1080/00021369.1983.10866087
  • Jakob U, Muse W, Eser M, Bardwell JCA. 1999. Chaperone activity with a redox switch. Cell. 96(3):341–352. doi:10.1016/s0092-8674(00)80547-4
  • Jeng MF, Campbell AP, Begley T, Holmgren A, Case DA, Wright PE, Dyson HJ. 1994. High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure. 2(9):853–868. doi:10.1016/s0969-2126(94)00086-7
  • Jeong S, Jung JH, Kim MK, de Groot A, Blanchard L, Ryu S, Bahn YS, Lim S. 2021. Atypical Bacilliredoxin AbxC plays a role in responding to oxidative stress in radiation-resistant bacterium Deinococcus radiodurans. Antioxidants. 10(7):1148. doi:10.3390/antiox10071148
  • Jeong SW, Jung JH, Kim MK, Seo HS, Lim HM, Lim S. 2016. The three catalases in Deinococcus radiodurans: only two show catalase activity. Biochem Biophys Res Commun. 469(3):443–448. doi:10.1016/j.bbrc.2015.12.017
  • Jeong SW, Seo HS, Kim MK, Choi JI, Lim HM, Lim S. 2016. PprM is necessary for up-regulation of katE1 encoding the major catalase of Deinococcus radiodurans under unstressed culture conditions. J Microbiol. 54(6):426–431. doi:10.1007/s12275-016-6175-8
  • Ji HF. 2010. Insight into the strong antioxidant activity of deinoxanthin a unique carotenoid in Deinococcus radiodurans. Int J Mol Sci. 11(11):4506–4510. doi:10.3390/ijms11114506
  • Jiang S, Wang J, Liu X, Liu Y, Guo C, Zhang L, Han J, Wu X, Xue D, Gomaa AE, et al. 2017. DrwH a novel WHy domain-containing hydrophobic LEA5C protein from Deinococcus radiodurans protects enzymatic activity under oxidative stress. Sci Rep. 7(1):9281. doi:10.1038/s41598-017-09541-2
  • Jiao J, Wang L, Xia W, Li M, Sun H, Xu G, Tian B, Hua Y. 2012. Function and biochemical characterization of RecJ in Deinococcus radiodurans. DNA Repair. 11(4):349–356. doi:10.1016/j.dnarep.2011.11.008
  • Joe MH, Jung SW, Im SH, Lim SY, Song HP, Kwon O, Kim DH. 2011. Genome-wide response of Deinococcus radiodurans on cadmium toxicity. J Microbiol Biotechnol. 21(4):438–447. doi:10.4014/jmb.1012.12021
  • Joshi B, Schmid R, Altendorf K, Apte SK. 2004. Protein recycling is a major component of post-irradiation recovery in Deinococcus radiodurans strain R1. Biochem Biophys Res Commun. 320(4):1112–1117. doi:10.1016/j.bbrc.2004.06.062
  • Kang KA, Zhang R, Chae S, Lee SJ, Kim J, Kim J, Jeong J, Lee J, Shin T, Lee NH, et al. 2010. Phloroglucinol (135-trihydroxybenzene) protects against ionizing radiation-induced cell damage through inhibition of oxidative stress in vitro and in vivo. Chem Biol Interact. 185(3):215–226. doi:10.1016/j.cbi.2010.02.031
  • Kappler U, Nasreen M, McEwan A. 2019. New insights into the molecular physiology of sulfoxide reduction in bacteria. Adv Microb Physiol. 75:1–51.
  • Karlin S, Mrázek J. 2001. Predicted highly expressed and putative alien genes of Deinococcus radiodurans and implications for resistance to ionizing radiation damage. Proc Natl Acad Sci U S A. 98(9):5240–5245. doi:10.1073/pnas.081077598
  • Karrenberg FH, Wildhaber I, Baumeister W. 1987. Surface structure variants in Deinococcus radiodurans. Curr Microbiol. 16(1):15–20. doi:10.1007/BF01568163
  • Kauffmann B, Aubry A, Favier F. 2005. The three-dimensional structures of peptide methionine sulfoxide reductases: current knowledge and open questions. Biochim Biophys Acta. 1703(2):249–260. doi:10.1016/j.bbapap.2004.09.008
  • Khairnar NP, Joe MH, Misra HS, Lim SY, Kim DH. 2013. FrnE a cadmium-inducible protein in Deinococcus radiodurans is characterized as a disulfide isomerase chaperone in vitro and for its role in oxidative stress tolerance in vivo. J Bacteriol. 195(12):2880–2886. doi:10.1128/JB.01503-12
  • Khairnar NP, Misra HS, Apte SK. 2003. Pyrroloquinoline-quinone synthesized in Escherichia coli by pyrroloquinoline-quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization. Biochem Biophys Res Commun. 312(2):303–308. doi:10.1016/j.bbrc.2003.10.121
  • Kim MK, Zhao L, Jeong S, Zhang J, Jung JH, Seo HS, Choi JI, Lim S. 2021. Structural and biochemical characterization of Thioredoxin-2 from Deinococcus radiodurans. Antioxidants. 10(11):1843. doi:10.3390/antiox10111843
  • Kirsch M, De Groot H. 2001. NAD(P)H a directly operating antioxidant?. 15(9):1569–1574. doi:10.1096/fj.00-0823hyp
  • Kobayashi I, Tamura T, Sghaier H, Narumi I, Yamaguchi S, Umeda K, Inagaki K. 2006. Characterization of monofunctional catalase KatA from radioresistant bacterium Deinococcus radiodurans. J Biosci Bioeng. 101(4):315–321. doi:10.1263/jbb.101.315
  • Kobashigawa S, Kashino G, Suzuki K, Yamashita S, Mori H. 2015. Ionizing radiation-induced cell death is partly caused by increase of mitochondrial reactive oxygen species in normal human fibroblast cells. Radiat Res. 183(4):455–464. doi:10.1667/RR13772.1
  • Korystov YuN. 1992. Contributions of the direct and indirect effects of ionizing radiation to reproductive cell death. Radiat Res. 129(2):228–234.
  • Krisko A, Radman M. 2010. Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proc Natl Acad Sci U S A. 107(32):14373–14377. doi:10.1073/pnas.1009312107
  • Krisko A, Radman M. 2013. Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol. 5(7):a012765. doi:10.1101/cshperspect.a012765
  • Kristensen H, Christensen EA. 1981. Radiation-resistant micro-organisms isolated from textiles. Acta Pathol Microbiol Scand B. 89(5):303–309. doi:10.1111/j.1699-0463.1981.tb00193_89b.x
  • Kulkarni S, Ballal A, Apte SK. 2013. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater. 262:853–861. doi:10.1016/j.jhazmat.2013.09.057
  • Le Caër S. 2011. Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water. 3(1):235–253. doi:10.3390/w3010235
  • Lee JW, Helmann JD. 2007. Functional specialization within the Fur family of metalloregulators. Biometals. 20(3–4):485–499. doi:10.1007/s10534-006-9070-7
  • Lee S, Jeong H, Lee JH, Chung JM, Kim R, Yun HJ, Won J, Jung HS. 2017. Characterisation of conformational and functional features of alkyl hydroperoxide reductase E-like protein. Biochem Biophys Res Commun. 489(2):217–222. doi:10.1016/j.bbrc.2017.05.135
  • Lee S, Kim SM, Lee RT. 2013. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal. 18(10):1165–1207. doi:10.1089/ars.2011.4322
  • Lemee L, Peuchant E, Clerc M, Brunner M, Pfander H. 1997. Deinoxanthin: a new carotenoid isolated from Deinococcus radiodurans. Tetrahedron. 53(3):919–926. doi:10.1016/S0040-4020(96)01036-8
  • Létoffé S, Heuck G, Delepelaire P, Lange N, Wandersman C. 2009. Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc Natl Acad Sci U S A. 106(28):11719–11724. doi:10.1073/pnas.0903842106
  • Levin-Zaidman S, Englander J, Shimoni E, Sharma AK, Minton KW, Minsky A. 2003. Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science. 299(5604):254–256. doi:10.1126/science.1077865
  • Lewis NF. 1971. Studies on a radio-resistant coccus isolated from Bombay duck (Harpodon nehereus). J Gen Microbiol. 66(1):29–35. doi:10.1099/00221287-66-1-29
  • Li M, Sun H, Feng Q, Lu H, Zhao Y, Zhang H, Xu X, Jiao J, Wang L, Hua Y. 2013. Extracellular dGMP enhances Deinococcus radiodurans tolerance to oxidative stress. PLoS One. 8(1):e54420. doi:10.1371/journal.pone.0054420
  • Li S, Peterson NA, Kim M-Y, Kim C-Y, Hung L-W, Yu M, Lekin T, Segelke BW, Lott JS, Baker EN. 2005. Crystal structure of AhpE from Mycobacterium tuberculosis a 1-Cys peroxiredoxin. J Mol Biol. 346(4):1035–1046. doi:10.1016/j.jmb.2004.12.046
  • Li S, Zhu Q, Luo J, Shu Y, Guo K, Xie J, Xiao F, He S. 2021. Application progress of Deinococcus radiodurans in biological treatment of radioactive uranium-containing wastewater. Indian J Microbiol. 61(4):417–426. doi:10.1007/s12088-021-00969-9
  • Li W, Ma Y, Yang J, Xiao F, Wang W, He S. 2017. RNA-binding domain is necessary for PprM function in response to the extreme environmental stress in Deinococcus radiodurans. Indian J Microbiol. 57(4):492–498. doi:10.1007/s12088-017-0684-y
  • Lim S, Jung JH, Blanchard L, de Groot A. 2019. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev. 43(1):19–52. doi:10.1093/femsre/fuy037
  • Lindquist JA, Mertens PR. 2018. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun Signal. 16(1):63. doi:10.1186/s12964-018-0274-6
  • Linzner N, Loi VV, Fritsch VN, Tung QN, Stenzel S, Wirtz M, Hell R, Hamilton CJ, Tedin K, Fulde M, et al. 2019. Staphylococcus aureus uses the bacilliredoxin (BrxAB)/bacillithiol disulfide reductase (YpdA) redox pathway to defend against oxidative stress under infections. Front Microbiol. 10:1355. doi:10.3389/fmicb.2019.01355
  • Liu C, Wang L, Li T, Lin L, Dai S, Tian B, Hua Y. 2014. A PerR-like protein involved in response to oxidative stress in the extreme bacterium Deinococcus radiodurans. Biochem Biophys Res Commun. 450(1):575–580. doi:10.1016/j.bbrc.2014.06.015
  • Liu Y, Zhang C, Wang Z, Lin M, Wang J, Wu M. 2021. Pleiotropic roles of late embryogenesis abundant proteins of Deinococcus radiodurans against oxidation and desiccation. Comput Struct Biotechnol J. 19:3407–3415. doi:10.1016/j.csbj.2021.05.051
  • Liu Y, Zhou J, Omelchenko MV, Beliaev AS, Venkateswaran A, Stair J, Wu L, Thompson DK, Xu D, Rogozin IB, et al. 2003. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci U S A. 100(7):4191–4196. doi:10.1073/pnas.0630387100
  • Liu F, Li N, Zhang Y. 2023. The radioresistant and survival mechanisms of Deinococcus radiodurans. Radiat Med Protect. 4:70–79. doi:10.1016/j.radmp.2023.03.001
  • Loi VV, Rossius M, Antelmann H. 2015. Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol. 6:187. doi:10.3389/fmicb.2015.00187
  • Lu H, Gao G, Xu G, Fan L, Yin L, Shen B, Hua Y. 2009. Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage. Mol Cell Proteomics. 8(3):481–494. doi:10.1074/mcp.M800123-MCP200
  • Lu J, Holmgren A. 2014. The thioredoxin antioxidant system. Free Radic Biol Med. 66:75–87. doi:10.1016/j.freeradbiomed.2013.07.036
  • Ludanyi M, Blanchard L, Dulermo R, Brandelet G, Bellanger L, Pignol D, Lemaire D, de Groot A. 2014. Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO. Mol Microbiol. 94(2):434–449. doi:10.1111/mmi.12774
  • Magerand R, Rey P, Blanchard L, de Groot A. 2021. Redox signaling through zinc activates the radiation response in Deinococcus bacteria. Sci Rep. 11(1):4528. doi:10.1038/s41598-021-84026-x
  • Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev. 65(1):44–79. doi:10.1128/MMBR.65.1.44-79.2001
  • Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Lapidus A, Copeland A, Kim E, Land M, et al. 2007. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS One. 2(9):e955. doi:10.1371/journal.pone.0000955
  • Maoka T. 2020. Carotenoids as natural functional pigments. J Nat Med. 74(1):1–16. doi:10.1007/s11418-019-01364-x
  • Maqbool I, Ponniresan VK, Govindasamy K, Prasad NR. 2020. Understanding the survival mechanisms of Deinococcus radiodurans against oxidative stress by targeting thioredoxin reductase redox system. Arch Microbiol. 202(9):2355–2366. doi:10.1007/s00203-019-01729-6
  • Markillie LM, Varnum SM, Hradecky P, Wong KK. 1999. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol. 181(2):666–669. doi:10.1128/JB.181.2.666-669.1999
  • Massingill JL, Hodgkins JE. 1967. Alkaloids of bacteria. Phytochemistry. 6(7):977–982. doi:10.1016/S0031-9422(00)86049-5
  • Mattimore V, Battista JR. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol. 178(3):633–637. doi:10.1128/jb.178.3.633-637.1996
  • Mayfield JA, Dehner CA, DuBois JL. 2011. Recent advances in bacterial heme protein biochemistry. Curr Opin Chem Biol. 15(2):260–266. doi:10.1016/j.cbpa.2011.02.002
  • Meyer L, Coste G, Sommer S, Oberto J, Confalonieri F, Servant P, Pasternak C. 2018. DdrI, a cAMP receptor protein family member, acts as a major regulator for adaptation of Deinococcus radiodurans to various stresses. J Bacteriol. 200(13):e00129-18. doi:10.1128/JB.00129-18
  • Mikheyeva IV, Thomas JM, Kolar SL, Corvaglia AR, Gaϊa N, Leo S, Francois P, Liu GY, Rawat M, Cheung AL. 2019. YpdA a putative bacillithiol disulfide reductase contributes to cellular redox homeostasis and virulence in Staphylococcus aureus. Mol Microbiol. 111(4):1039–1056. doi:10.1111/mmi.14207
  • Minton KW. 1996. Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutat Res. 363(1):1–7. doi:10.1016/0921-8777(95)00014-3
  • Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z, St Clair D, Batinic-Haberle I. 2012. Manganese superoxide dismutase MnSOD and its mimics. Biochim Biophys Acta. 1822(5):794–814. doi:10.1016/j.bbadis.2011.12.002
  • Mishra S, Imlay J. 2012. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch Biochem Biophys. 525(2):145–160. doi:10.1016/j.abb.2012.04.014
  • Misra HS, Khairnar NP, Barik A, Indira Priyadarsini K, Mohan H, Apte SK. 2004. Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria. FEBS Lett. 578(1–2):26–30. doi:10.1016/j.febslet.2004.10.061
  • Misra CS, Mukhopadhyaya R, Apte SK. 2014. Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium. J Biotechnol. 189:88–93. doi:10.1016/j.jbiotec.2014.09.013
  • Mortimer RK. 1958. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat Res. 66:158–169.
  • Moseley BE. 1983. Photobiology and radiobiology of Micrococcus (Deinococcus) radiodurans. In: Smith KC, editor. Photochemical and photobiological reviews. Boston (MA): Springer; p. 223–274.
  • Moseley BE, Mattingly A. 1971. Repair of irradiation transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans. J Bacteriol. 105(3):976–983. doi:10.1128/jb.105.3.976-983.1971
  • Motomura K, Hirota R, Okada M, Ikeda T, Ishida T, Kuroda A. 2014. A new subfamily of polyphosphate kinase 2 (class III PPK2) catalyzes both nucleoside monophosphate phosphorylation and nucleoside diphosphate phosphorylation. Appl Environ Microbiol. 80(8):2602–2608. doi:10.1128/AEM.03971-13
  • Munteanu A, Uivarosi V, Andries A. 2015. Recent progress in understanding the molecular mechanisms of radioresistance in Deinococcus bacteria. Extremophiles. 19(4):707–719. doi:10.1007/s00792-015-0759-9
  • Narumi I, Satoh K, Cui S, Funayama T, Kitayama S, Watanabe H. 2004. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol. 54(1):278–285. doi:10.1111/j.1365-2958.2004.04272.x
  • Neiers F, Kriznik A, Boschi-Muller S, Branlant G. 2004. Evidence for a new sub-class of methionine sulfoxide reductases B with an alternative thioredoxin recognition signature. J Biol Chem. 279(41):42462–42468. 4246. doi:10.1074/jbc.M407464200
  • Neville N, Roberge N, Jia Z. 2022. Polyphosphate kinase 2 (PPK2) enzymes: structure, function, and roles in bacterial physiology and virulence. Int J Mol Sci. 23(2):670. doi:10.3390/ijms23020670
  • Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Budiarto T, Hamilton CJ, Claiborne A, Helmann JD, Fahey RC. 2009. Bacillithiol is an antioxidant thiol produced in Bacilli. Nat Chem Biol. 5(9):625–627. doi:10.1038/nchembio.189
  • Nguyen KH, Smith LT, Xiao L, Bhattacharyya G, Grove A. 2012. On the stoichiometry of Deinococcus radiodurans Dps-1 binding to duplex DNA. Proteins. 80(3):713–721. doi:10.1002/prot.23228
  • Obiero J, Pittet V, Bonderoff SA, Sanders DA. 2010. Thioredoxin system from Deinococcus radiodurans. J Bacteriol. 192(2):494–501. doi:10.1128/JB.01046-09
  • Omelchenko MV, Wolf YI, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Daly MJ, Koonin EV, Makarova KS. 2005. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol. 5:57. doi:10.1186/1471-2148-5-57
  • Ott E, Kawaguchi Y, Kölbl D, Chaturvedi P, Nakagawa K, Yamagishi A, Weckwerth W, Milojevic T. 2017. Proteometabolomic response of Deinococcus radiodurans exposed to UVC and vacuum conditions: initial studies prior to the Tanpopo space mission. PLoS One. 12(12):e0189381. doi:10.1371/journal.pone.0189381
  • Ott E, Fuchs FM, Moeller R, Hemmersbach R, Kawaguchi Y, Yamagishi A, Weckwerth W, Milojevic T. 2019. Molecular response of Deinococcus radiodurans to simulated microgravity explored by proteometabolomic approach. Sci Rep. 9(1):18462. doi:10.1038/s41598-019-54742-6
  • Palmieri G, Arciello S, Bimonte M, Carola A, Tito A, Gogliettino M, Cocca E, Fusco C, Balestrieri M, Colucci MG, et al. 2019. The extraordinary resistance to UV radiations of a manganese superoxide dismutase of Deinococcus radiodurans offers promising potentialities in skin care applications. J Biotechnol. 302:101–111. doi:10.1016/j.jbiotec.2019.07.002
  • Pavlov AK, Kalinin VL, Konstantinov AN, Shelegedin VN, Pavlov AA. 2006. Was earth ever infected by Martian biota? Clues from radioresistant bacteria. Astrobiology. 6(6):911–918. doi:10.1089/ast.2006.6.911
  • Peana M, Chasapis CT, Simula G, Medici S, Zoroddu MA. 2018. A model for manganese interaction with Deinococcus radiodurans proteome network involved in ROS response and defense. J Trace Elem Med Biol. 50:465–473. doi:10.1016/j.jtemb.2018.02.001
  • Peana M, Medici S, Pangburn HA, Lamkin TJ, Ostrowska M, Gumienna-Kontecka E, Zoroddu MA. 2016. Manganese binding to antioxidant peptides involved in extreme radiation resistance in Deinococcus radiodurans. J Inorg Biochem. 164:49–58. doi:10.1016/j.jinorgbio.2016.08.012
  • Pereira F, Lima PRC, Alves IS, Pelegrineli SQ, Andrade EVS, Stenders RM, Reis ALQ, Andrade ER. 2022. Selective threat assessment in a disruptive urban nuclear event. Prog. Nucl. Energy. 152:104399. doi:10.1016/j.pnucene.2022.104399
  • Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA. 2015. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci. 40(8):435–445. doi:10.1016/j.tibs.2015.05.001
  • Peters J, Baumeister W. 1986. Molecular cloning, expression, and characterization of the gene for the surface (HPI)-layer protein of Deinococcus radiodurans in Escherichia coli. J Bacteriol. 167(3):1048–1054. doi:10.1128/jb.167.3.1048-1054.1986
  • Poole LB, Ellis HR. 1996. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemistry. 35(1):56–64. doi:10.1021/bi951887s
  • Qi HZ, Wang WZ, He JY, Ma Y, Xiao FZ, He SY. 2020. Antioxidative system of Deinococcus radiodurans. Res Microbiol. 171(2):45–54. doi:10.1016/j.resmic.2019.11.002
  • Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC, et al. 2005. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol. 71(9):5225–5235. doi:10.1128/AEM.71.9.5225-5235.2005
  • Rajpurohit YS, Desai SS, Misra HS. 2013. Pyrroloquinoline quinone and a quinoprotein kinase support γ-radiation resistance in Deinococcus radiodurans and regulate gene expression. J Basic Microbiol. 53(6):518–531. doi:10.1002/jobm.201100650
  • Rajpurohit YS, Misra HS. 2010. Characterization of a DNA damage-inducible membrane protein kinase from Deinococcus radiodurans and its role in bacterial radioresistance and DNA strand break repair. Mol Microbiol. 77(6):1470–1482. doi:10.1111/j.1365-2958.2010.07301.x
  • Rao NN, Gómez-García MR, Kornberg A. 2009. Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem. 78:605–647. doi:10.1146/annurev.biochem.77.083007.093039
  • Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. 2014. Effects of ionizing radiation on biological molecules–mechanisms of damage and emerging methods of detection. Antioxid Redox Signal. 21(2):260–292. doi:10.1089/ars.2013.5489
  • Reon BJ, Nguyen KH, Bhattacharyya G, Grove A. 2012. Functional comparison of Deinococcus radiodurans Dps proteins suggests distinct in vivo roles. Biochem J. 447(3):381–391. doi:10.1042/BJ20120902
  • Reyes AM, Hugo M, Trostchansky A, Capece L, Radi R, Trujillo M. 2011. Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation. Free Radic Biol Med. 51(2):464–473. doi:10.1016/j.freeradbiomed.2011.04.023
  • Rhee SG, Woo HA. 2011. Multiple functions of peroxiredoxins: peroxidases sensors and regulators of the intracellular messenger H2O2 and protein chaperones. Antioxid Redox Signal. 15(3):781–794. doi:10.1089/ars.2010.3393
  • Robert G, Wagner JR, Cadet J. 2023. Oxidatively generated tandem DNA modifications by pyrimidinyl and 2-deoxyribosyl peroxyl radicals. Free Radic Biol Med. 196:22–36. doi:10.1016/j.freeradbiomed.2022.12.104
  • Rosario-Cruz Z, Boyd JM. 2016. Physiological roles of bacillithiol in intracellular metal processing. Curr Genet. 62(1):59–65. doi:10.1007/s00294-015-0511-0
  • Santivasi WL, Xia F. 2014. Ionizing radiation-induced DNA damage response and repair. Antioxid Redox Signal. 21(2):251–259. doi:10.1089/ars.2013.5668
  • Santos SP, Mitchell EP, Franquelim HG, Castanho MA, Abreu IA, Romão CV. 2015. Dps from Deinococcus radiodurans: oligomeric forms of Dps1 with distinct cellular functions and Dps2 involved in metal storage. 282(22):4307–4327. doi:10.1111/febs.13420
  • Schmid AK, Lipton MS, Mottaz H, Monroe ME, Smith RD, Lidstrom ME. 2005. Global whole-cell FTICR mass spectrometric proteomics analysis of the heat shock response in the radioresistant bacterium Deinococcus radiodurans. J Proteome Res. 4(3):709–718. doi:10.1021/pr049815n
  • Serianni RW, Bruce AK. 1968. Radioresistance of Micrococcus radiodurans during the growth cycle. Radiat Res. 36(2):193–207. doi:10.2307/3572645
  • Servant P, Jolivet E, Bentchikou E, Mennecier S, Bailone A, Sommer S. 2007. The ClpPX protease is required for radioresistance and regulates cell division after gamma-irradiation in Deinococcus radiodurans. Mol Microbiol. 66(5):1231–1239. doi:10.1111/j.1365-2958.2007.06003.x
  • Sexton DL, Burgold S, Schertel A, Tocheva EI. 2022. Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans. Curr Res Struct Biol. 4:1–9. doi:10.1016/j.crstbi.2021.12.001
  • Sharma A, Gaidamakova EK, Matrosova VY, Bennett B, Daly MJ, Hoffman BM. 2013. Responses of Mn2+ speciation in Deinococcus radiodurans and Escherichia coli to γ-radiation by advanced paramagnetic resonance methods. Proc Natl Acad Sci U S A. 110(15):5945–5950. doi:10.1073/pnas.1303376110
  • Sharma A, Gaidamakova EK, Grichenko O, Matrosova VY, Hoeke V, Klimenkova P, Conze IH, Volpe RP, Tkavc R, Gostinčar C, et al. 2017. Across the tree of life; radiation resistance is governed by antioxidant Mn2+ gauged by paramagnetic resonance. Proc Natl Acad Sci U S A. 114(44):E9253–E9260. doi:10.1073/pnas.1713608114
  • Sharma DK, Bihani SC, Siddiqui MQ, Misra HS, Rajpurohit YS. 2022. WD40 domain of RqkA regulates its kinase activity and role in extraordinary radioresistance of D. radiodurans. J Biomol Struct Dyn. 40(3):1246–1259. doi:10.1080/07391102.2020.1824810
  • Shen YQ, Bonnot F, Imsand EM, RoseFigura JM, Sjölander K, Klinman JP. 2012. Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry. 51(11):2265–2275. doi:10.1021/bi201763d
  • Shin DH, Choi IG, Busso D, Jancarik J, Yokota H, Kim R, Kim SH. 2004. Structure of OsmC from Escherichia coli: a salt-shock-induced protein. Acta Crystallogr D Biol Crystallogr. 60(Pt 5):903–911. doi:10.1107/S0907444904005013
  • Shuryak I, Matrosova VY, Gaidamakova EK, Tkavc R, Grichenko O, Klimenkova P, Volpe RP, Daly MJ. 2017. Microbial cells can cooperate to resist high-level chronic ionizing radiation. PLoS One. 12(12):e0189261. doi:10.1371/journal.pone.0189261
  • Slade D, Lindner AB, Paul G, Radman M. 2009. Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell. 136(6):1044–1055. doi:10.1016/j.cell.2009.01.018
  • Slade D, Radman M. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev. 75(1):133–191. doi:10.1128/MMBR.00015-10
  • Smith JL. 2004. The physiological role of ferritin-like compounds in bacteria. Crit Rev Microbiol. 30(3):173–185. doi:10.1080/10408410490435151
  • Smolik AC, Bengez-Pudja L, Cheng I, Mascotti DP. 2014. Characterization of E. coli manganese superoxide dismutase binding to RNA and DNA. Biochim Biophys Acta. 1844(12):2251–2256. doi:10.1016/j.bbapap.2014.09.022
  • Stadtman ER, Berlett BS, Chock PB. 1990. Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer. Proc Natl Acad Sci U S A. 87(1):384–388. doi:10.1073/pnas.87.1.384
  • Stefanková P, Perecko D, Barák I, Kollárová M. 2006. The thioredoxin system from Streptomyces coelicolor. J Basic Microbiol. 46(1):47–55. doi:10.1002/jobm.200510036
  • Stöcker S, Maurer M, Ruppert T, Dick TP. 2018. A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation. Nat Chem Biol. 14(2):148–155. doi:10.1038/nchembio.2536
  • Sudharsan M, Prasad NR, Kanimozhi G, Rishiikeshwer BS, Brindha GR, Chakraborty A. 2022. Redox status and metabolomic profiling of thioredoxin reductase inhibitors and 4 kGy ionizing radiation-exposed Deinococcus radiodurans. Microbiol Res. 261:127070. doi:10.1016/j.micres.2022.127070
  • Sukhi SS, Shashidhar R, Kumar SA, Bandekar JR. 2009. Radiation resistance of Deinococcus radiodurans R1 with respect to growth phase. FEMS Microbiol Lett. 297(1):49–53. doi:10.1111/j.1574-6968.2009.01652.x
  • Sun H, Xu G, Zhan H, Chen H, Sun Z, Tian B, Hua Y. 2010. Identification and evaluation of the role of the manganese efflux protein in Deinococcus radiodurans. BMC Microbiol. 10:319. doi:10.1186/1471-2180-10-319
  • Sun H, Li M, Xu G, Chen H, Jiao J, Tian B, Wang L, Hua Y. 2012. Regulation of MntH by a dual Mn(II)- and Fe(II)-dependent transcriptional repressor (DR2539) in Deinococcus radiodurans. PLoS One. 7(4):e35057. doi:10.1371/journal.pone.0035057
  • Tanaka M, Earl AM, Howell HA, Park MJ, Eisen JA, Peterson SN, Battista JR. 2004. Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics. 168(1):21–33. doi:10.1534/genetics.104.029249
  • Thompson BG, Murray RG. 1981. Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark. Can J Microbiol. 27(7):729–734. doi:10.1139/m81-111
  • Thompson BG, Murray RGE, Boyce JF. 1982. The association of the surface array and the outer membrane of Deinococcus radiodurans. Can J Microbiol. 28(9):1081–1088. doi:10.1139/m82-161
  • Tian B, Hua Y. 2010. Carotenoid in extremophilic Deinococcus–Thermus bacteria. Trends Microbiol. 18(11):512–520. doi:10.1016/j.tim.2010.07.007
  • Tian B, Xu Z, Sun Z, Lin J, Hua Y. 2007. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis chemiluminescence and DNA damage analyses. Biochim Biophys Acta. 1770(6):902–911. doi:10.1016/j.bbagen.2007.01.016
  • Tian B, Sun Z, Shen S, Wang H, Jiao J, Wang L, Hu Y, Hua Y. 2009. Effects of carotenoids from Deinococcus radiodurans on protein oxidation. Lett Appl Microbiol. 49(6):689–694. doi:10.1111/j.1472-765X.2009.02727.x
  • Tian B, Wu Y, Sheng D, Zheng Z, Gao G, Hua Y. 2004. Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence. 19(2):78–84. doi:10.1002/bio.761
  • Timmins J, Moe E. 2016. A decade of biochemical and structural studies of the DNA repair machinery of Deinococcus radiodurans: major findings, functional and mechanistic insight and challenges. Comput Struct Biotechnol J. 14:168–176. doi:10.1016/j.csbj.2016.04.001
  • Ul Hussain Shah AM, Zhao Y, Wang Y, Yan G, Zhang Q, Wang L, Tian B, Chen H, Hua Y. 2014. A Mur regulator protein in the extremophilic bacterium Deinococcus radiodurans. PLoS One. 9(9):e106341. doi:10.1371/journal.pone.0106341
  • United Nations Scientific Committee on the Effects of Atomic Radiation. 1982. Effects of atomic radiation. Report A/RES/37/87. New York: United Nations.
  • Vieira Dos Santos C, Rey P. 2006. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci. 11(7):329–334. doi:10.1016/j.tplants.2006.05.005
  • Villa JK, Han R, Tsai CH, Chen A, Sweet P, Franco G, Vaezian R, Tkavc R, Daly MJ, Contreras LM. 2021. A small RNA regulates pprM a modulator of pleiotropic proteins promoting DNA repair in Deinococcus radiodurans under ionizing radiation. Sci Rep. 11(1):12949. doi:10.1038/s41598-021-91335-8
  • von Kügelgen A, van Dorst S, AV, Bharat TAM. 2022. A multidomain connector links the outer membrane and cell wall in phylogenetically deep-branching bacteria. Proc Natl Acad Sci U S A. 119(33):e2203156119.
  • von Sonntag C. 1987. The chemical basis of radiation biology. London: Taylor & Francis.
  • Wang L, Hu J, Liu M, Yang S, Zhao Y, Cheng K, Xu G, Li M, Tian B, Hua Y. 2016. Proteomic insights into the functional basis for the response regulator DrRRA of Deinococcus radiodurans. Int J Radiat Biol. 92(5):273–280. doi:10.3109/09553002.2016.1150618
  • Wang L, Tan H, Cheng K, Li M, Xu X, Wang J, Hua Y. 2015. Sec pathway influences the growth of Deinococcus radiodurans. Curr Microbiol. 70(5):651–656. doi:10.1007/s00284-014-0767-5
  • Wang L, Xu G, Chen H, Zhao Y, Xu N, Tian B, Hua Y. 2008. DrRRA: a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans. Mol Microbiol. 67(6):1211–1222. doi:10.1111/j.1365-2958.2008.06113.x
  • Wang P, Schellhorn HE. 1995. Induction of resistance to hydrogen peroxide and radiation in Deinococcus radiodurans. Can J Microbiol. 41(2):170–176. doi:10.1139/m95-023
  • Wang W, Ma Y, He J, Qi H, Xiao F, He S. 2019. Gene regulation for the extreme resistance to ionizing radiation of Deinococcus radiodurans. Gene. 715:144008. doi:10.1016/j.gene.2019.144008
  • Wang Y, Xu Q, Lu H, Lin L, Wang L, Xu H, Cui X, Zhang H, Li T, Hua Y. 2015. Protease activity of PprI facilitates DNA damage response: Mn2+-dependence and substrate sequence-specificity of the proteolytic reaction. PLoS One. 10(3):e0122071. doi:10.1371/journal.pone.0122071
  • White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science. 286(5444):1571–1577. doi:10.1126/science.286.5444.1571
  • Wolf SG, Frenkiel D, Arad T, Finkel SE, Kolter R, Minsky A. 1999. DNA protection by stress-induced biocrystallization. Nature. 400(6739):83–85. doi:10.1038/21918
  • Work E, Griffiths H. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J Bacteriol. 95(2):641–657. doi:10.1128/jb.95.2.641-657.1968
  • Wufuer R, Wei Y, Lin Q, Wang H, Song W, Liu W, Zhang D, Pan X, Gadd GM. 2017. Uranium bioreduction and biomineralization. Adv Appl Microbiol. 101:137–168.
  • Yamashiro T, Murata K, Kawai S. 2017. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans. Extremophiles. 21(2):399–407. doi:10.1007/s00792-016-0913-z
  • Yang P, Chen Z, Shan Z, Ding X, Liu L, Guo J. 2014. Effects of FMN riboswitch on antioxidant activity in Deinococcus radiodurans under H2O2 stress. Microbiol Res. 169(5–6):411–416. doi:10.1016/j.micres.2013.09.005
  • Yang S, Xu H, Wang J, Liu C, Lu H, Liu M, Zhao Y, Tian B, Wang L, Hua Y. 2016. Cyclic AMP receptor protein acts as a transcription regulator in response to stresses in Deinococcus radiodurans. PLoS One. 11(5):e0155010. doi:10.1371/journal.pone.0155010
  • Yang Q. 2021. Crucial roles of carotenoids as bacterial endogenous defense system for bacterial radioresistance of Deinococcus radiodurans. bioRxiv. 2021.05.26.445811.
  • Yin L, Wang L, Lu H, Xu G, Chen H, Zhan H, Tian B, Hua Y. 2010. DRA0336 another OxyR homolog involved in the antioxidation mechanisms in Deinococcus radiodurans. J Microbiol. 48(4):473–479. doi:10.1007/s12275-010-0043-8
  • Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M, Lindner AB, Radman M. 2006. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature. 443(7111):569–573. doi:10.1038/nature05160
  • Zamocky M, Furtmüller PG, Obinger C. 2008. Evolution of catalases from bacteria to humans. Antioxid Redox Signal. 10(9):1527–1548. doi:10.1089/ars.2008.2046
  • Zeth K. 2012. Dps biomineralizing proteins: multifunctional architects of nature. Biochem J. 445(3):297–311. doi:10.1042/BJ20120514
  • Zhang C, Wei J, Zheng Z, Ying N, Sheng D, Hua Y. 2005. Proteomic analysis of Deinococcus radiodurans recovering from gamma-irradiation. Proteomics. 5(1):138–143. doi:10.1002/pmic.200300875
  • Zhang H, Ishige K, Kornberg A. 2002. A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc Natl Acad Sci U S A. 99(26):16678–16683. doi:10.1073/pnas.262655199
  • Zhang L, Yang Q, Luo X, Fang C, Zhang Q, Tang Y. 2007. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability. Arch Microbiol. 188(4):411–419. doi:10.1007/s00203-007-0262-5
  • Zhang W, Baseman JB. 2014. Functional characterization of osmotically inducible protein C (MG 427) from Mycoplasma genitalium. J Bacteriol. 196(5):1012–1019. doi:10.1128/JB.00954-13
  • Zhang XL, Yang Q. 2021. Chemical structure elucidation of the carotenoids in the extremely radiation-resistant bacterium Deinococcus radiodurans R1. bioRxiv. 2021.05.26.445707.
  • Zhang YM, Liu JK, Shouri MR, Wong TY. 2006. Characterization of a Mn-dependent fructose-16-bisphosphate aldolase in Deinococcus radiodurans. Biometals. 19(1):31–37. doi:10.1007/s10534-005-4320-7
  • Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND. 2002. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem. 277(31):27689–27696. doi:10.1074/jbc.M202094200
  • Zhao L, Jeong S, Zhang J, Jung JH, Choi JI, Lim S, Kim MK. 2020. Crystal structure of the AhpD-like protein DR1765 from Deinococcus radiodurans R1. Biochem Biophys Res Commun. 529(2):444–449. doi:10.1016/j.bbrc.2020.06.061
  • Zhong P, Huang H. 2017. Recent progress in the research of cold-inducible RNA-binding protein. Future Sci OA. 3(4):FSO246. doi:10.4155/fsoa-2017-0077
  • Zhou Z, Zhang W, Su S, Chen M, Lu W, Lin M, Molnár I, Xu Y. 2015. CYP287A1 is a carotenoid 2-β-hydroxylase required for deinoxanthin biosynthesis in Deinococcus radiodurans R1. Appl Microbiol Biotechnol. 99(24):10539–10546. doi:10.1007/s00253-015-6910-9
  • Zimmerman JM, Battista JR. 2005. A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol. 5:17. doi:10.1186/1471-2180-5-17

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.