42
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

An inter-comparison between radiobiological characteristics of a commercial low-energy IORT system by Geant4-DNA and MCDS Monte Carlo codes

&
Pages 1226-1235 | Received 19 Aug 2023, Accepted 17 Nov 2023, Published online: 02 Jan 2024

References

  • Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, et al. 2003. Geant4, a simulation toolkit. Nucl Instrum Methods Phys Res Sect A: Accel Spectrometers Detect Assoc Equip. 506(3):250–303. doi:10.1016/S0168-9002(03)01368-8
  • Aydogan B, Marshall DT, Swarts SG, Turner JE, Boone AJ, Richards NG, Bolch WE. 2002. Site-specific OH Attack to the sugar moiety of DNA: a comparison of experimental data and computational simulation. Radiat Res. 157(1):38–44. doi:10.1667/0033-7587(2002)157[0038:SSOATT]2.0.CO;2
  • Bernal MA, Bordage MC, Brown JMC, Davídková M, Delage E, El Bitar Z, Enger SA, Francis Z, Guatelli S, Ivanchenko VN, et al. 2015. Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 monte carlo simulation toolkit. Phys Med. 31(8):861–874. doi:10.1016/j.ejmp.2015.10.087
  • Bernal MA, DeAlmeida CE, Sampaio C, Incerti S, Champion C, Nieminen P. 2011. The invariance of the total direct DNA strand break yield. Med Phys. 38(7):4147–4153. doi:10.1118/1.3597568
  • Beyreuther E, Lessmann E, Pawelke J, Pieck S. 2009. DNA double-strand break signalling: X-ray energy dependence of residual colocalized foci of γ-H2AX and 53BP1. Int J Radiat Biol. 85(11):1042–1050. doi:10.3109/09553000903232884
  • Botchway SW, Stevens DL, Hill MA, Jenner TJ, O'Neill P. 1997. Induction and rejoining of DNA double-strand breaks in Chinese hamster V79–4 cells irradiated with characteristic aluminum K and copper L ultrasoft X rays. Radiat Res. 148(4):317–324. doi:10.2307/3579516
  • Chatzipapas KP, Papadimitroulas P, Emfietzoglou D, Kalospyros SA, Hada M, Georgakilas AG, Kagadis GC. 2020. Ionizing radiation and complex DNA damage: quantifying the radiobiological damage using monte carlo simulations. Cancers. 12(4):799. doi:10.3390/cancers12040799
  • Chatzipapas KP, Tran NH, Dordevic M, Zivkovic S, Zein S, Shin W, Sakata D, Lampe N, Brown JMC, Ristic‐Fira A, et al. 2022. Simulation of DNA damage using Geant4-DNA: an overview of the molecular DNA example application. arXiv. Preprint. 7(1):4–14. doi:10.1002/pro6.1186
  • Delage E, Pham QT, Karamitros M, Payno H, Stepan V, Incerti S, Maigne L, Perrot Y. 2015. PDB4DNA: implementation of dna geometry from the protein data bank (PDB) description for Geant4-DNA Monte Carlo simulations. Comput Phys Commun. 192:282–288. doi:10.1016/j.cpc.2015.02.026
  • de Lara CM, Hill MA, Jenner TJ, Papworth D, O'Neill P. 2001. Dependence of the yield of DNA double-strandbreaks in Chinese hamster V79–4 cells on the photon energy of ultrasoft X rays. Radiat Res. 155(3):440–448.
  • Eaton DJ, Schneider F. 2014. Radiation protection. In: Keshtgar M, Pigott K, Wenz F, editors. Targeted Intraoperative Radiother Oncol. New York:Springer; p. 38–43.
  • Ezzati AO, Mahmoud-Pashazadeh A, Studenski MT. 2017. Monte Carlo simulation of the RBE of I-131 radiation using DNA damage as biomarker. Australas Phys Eng Sci Med. 40(2):395–400. doi:10.1007/s13246-017-0544-4
  • Francis Z, Incerti S, Karamitros M, Tran HN, Villagrasa C. 2011. Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package. Nucl Instr Meth Phys Res B. 269(20):2307–2311. doi:10.1016/j.nimb.2011.02.031
  • Freneau A, Dos Santos M, Voisin P, Tang N, Bueno Vizcarra M, Villagrasa C, Roy L, Vaurijoux A, Gruel G. 2018. Relation between DNA double-strand breaks and energy spectra of secondary electrons produced by different X-ray energies. Int J Radiat Biol. 94(12):1075–1084. doi:10.1080/09553002.2018.1518612
  • Friedland W, Dingfelder M, Kundrát P, Jacob P. 2011. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res. 711(1–2):28–40. doi:10.1016/j.mrfmmm.2011.01.003
  • Friedland W, Paretzke HG, Ballarini F, Ottolenghi A, Kreth G, Cremer C. 2008. First steps towards systemsradiation biology studies concerned with DNA and chromosome structure within living cells. Radiat Environ Biophys. 47(1):49–61. doi:10.1007/s00411-007-0152-x
  • Goodhead DT, Nikjoo H. 1989. Track structure analysis of ultrasoft X-rays compared to high and low-LET radiations. Int J Radiat Biol. 55(4):513–529. doi:10.1080/09553008914550571
  • Hensley FW. 2017. Present state and issues in IORT physics. Radiat Oncol. 12(1):37. doi:10.1186/s13014-016-0754-z
  • Hsiao YY, Hung TH, Tu SJ, Tung CJ. 2014. Fast Monte Carlo simulation of DNA damage induction by Auger-electron emission. Int J Radiat Biol. 90(5):392–400. doi:10.3109/09553002.2014.892649
  • Hsiao Y, Stewart RD. 2008. Monte Carlo simulation of DNA damage induction by X-ray and selected radioisotopes. Phys Med Biol. 53(1):233–244. doi:10.1088/0031-9155/53/1/016
  • Incerti S, Kyriakou I, Bernal MA, Bordage MC, Francis Z, Guatelli S. 2018. Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA project. Med Phys. 45:e722–e739.
  • Karamitros M, Luan S, Bernal MA, Allison J, Baldacchino G, Davidkova M, Francis Z, Friedland W, Ivantchenko V, Ivantchenko A, et al. 2014. Diffusion-controlled reactions modeling in Geant4-DNA. J Comput Phys. 274:841–882.,. doi:10.1016/j.jcp.2014.06.011
  • Kirkby C, Ghasroddashti E, Poirier Y, Tambasco M, Stewart RD. 2013. RBE of kV CBCT radiation determined by Monte Carlo DNA damage simulations. Phys Med Biol. 58(16):5693–5704. doi:10.1088/0031-9155/58/16/5693
  • Kyriakou I, Sakata D, Tran HN, Perrot Y, Shin W-G, Lampe N, Zein S, Bordage MC, Guatelli S, Villagrasa C, et al. 2022. Review of the Geant4-DNA simulation toolkit for radiobiological applications at the cellular and DNA level. Cancers. 14(1):35. doi:10.3390/cancers14010035
  • Kyriakou I, Tremi I, Georgakilas AG, Emfietzoglou D. 2021. Microdosimetric investigation of the radiation quality of low-medium energy electrons using Geant4-DNA. Appl Radiat Isot. 172:109654. doi:10.1016/j.apradiso.2021.109654
  • Margis S, Magouni M, Kyriakou I, Georgakilas AG, Incerti S, Emfietzoglou D. 2020. Microdosimetric calculations of the direct DNA damage induced by low energy electrons using the Geant4-DNA Monte Carlo code. Phys Med Biol. 65(4):045007. doi:10.1088/1361-6560/ab6b47
  • Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas AG. 2017. Complex DNA damage: a route to radiation-induced genomic instability and carcinogenesis. Cancers . 9(7):91. doi:10.3390/cancers9070091
  • Mokari M, Alamatsaz MH, Moeini H, Babaei-Brojeny AA, Taleei R. 2018. Track structure simulation of low energy electron damage to DNA using Geant4-DNA. Biomed Phys Eng Express. 4(6):065009.[doi:10.1088/2057-1976/aae02e
  • Nikjoo H, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist D, Uehara S. 2016a. Radiation track, DNA damage and response—a review. Rep Prog Phys. 79(11):116601. doi:10.1088/0034-4885/79/11/116601
  • Nikjoo H, Lindborg L. 2010. RBE of low energy electrons and photons. Phys Med Biol. 55(10):R65–109. doi:10.1088/0031-9155/55/10/R01
  • Nikjoo H, O’Neill P, Goodhead D, Terrisol M. 1997. Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events. Int J Radiat Biol. 71:467–483.
  • Nikjoo H, O'Neill P, Wilson WE, Goodhead DT. 2001. Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat Res. 156(5 Pt 2):577–583.
  • Nikjoo H, Taleei R, Liamsuwan T, Liljequist D, Emfietzoglou D. 2016b. Perspectives in radiation biophysics: from radiation track structure simulation to mechanistic models of DNA damage and repair. Radiat Phys Chem. 128:3–10. doi:10.1016/j.radphyschem.2016.05.005
  • Nikjoo H, Uehara S. 2004. Track Structure Studies of Biological Systems. In: Mozuumder A, Hatano Y, editors. Charged particle and photon interactions with matter: chemical, physiochemical, and biological consequences with applications. New York: Marcel Dekker; p. 495–535.
  • Ottolenghi A, Baiocco G, Smyth V, Trott K, 2015. The ANDANTE project: a multidisciplinary approach to neutron RBE. Radiat Prot Dosimetry. 166(1-4):311–315. doi:10.1093/rpd/ncv158
  • RCSB Protein Data Bank (RCSB PDB). 2022. Accessed 16 December http://rcsb.org
  • Sakata D, Lampe N, Karamitros M, Kyriakou I, Belov O, Bernal MA, Bolst D, Bordage M-C, Breton V, Brown JMC, et al. 2019. Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA. Phys Med. 62:152–157. doi:10.1016/j.ejmp.2019.04.010
  • Sakata D, Belov O, Bordage M-C, Emfietzoglou D, Guatelli S, Inaniwa T, Ivanchenko V, Karamitros M, Kyriakou I, Lampe N, et al. 2020. Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA. Sci Rep. 10(1):20788. doi:10.1038/s41598-020-75982-x
  • Semenenko VA, Stewart RD. 2004. A fast Monte Carlo algorithm to simulate the spectrum of DNA damages formed by ionizing radiation. Radiat Res. 161(4):451–457. doi:10.1667/rr3140
  • Semenenko VA, Stewart RD. 2005. Monte Carlo simulation of base and nucleotide excision repair of clustered DNA damage sites. II. Comparisons of model predictions to measured data. Radiat Res. 164(2):194–201. doi:10.1667/rr3414
  • Semenenko VA, Stewart RD. 2006. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys Med Biol. 51(7):1693–1706. doi:10.1088/0031-9155/51/7/004
  • Semsarha F, Goliaei B, Raisali G, Khalafi H, Mirzakhanian L. 2014. An investigation on the radiation sensitivity of DNA conformations to 60Co gamma rays by using Geant4 toolkit. Nucl Instrum Methods Phys Res B. 323:75–81. doi:10.1016/j.nimb.2014.01.002
  • Scholes G, Willson RL, Ebert M. 1969. Pulse radiolysis of aqueous solutions of deoxyribonucleotides and of DNA: reaction with hydroxy-radicals. J Chem Soc D. (1):17–18. doi:10.1039/c29690000017
  • Shamsabadi R, Baghani HR, Azadegan B, Mowlavi AA. 2020a. Impact of spherical applicator diameter on relative biologic effectiveness of low energy IORT X-rays: a hybrid Monte Carlo study. Phys Med. 80:297–307. doi:10.1016/j.ejmp.2020.11.018
  • Shamsabadi R, Baghani HR, Azadegan B, Mowlavi AA. 2020b. Monte Carlo based analysis and evaluation of low-kV IORT spherical applicators. Z Med Phys. 30(1):60–69. doi:10.1016/j.zemedi.2019.08.002
  • Stewart RD, Carlson DJ, Butkus MP, Hawkins R, Friedrich T, Scholz M. 2018. A comparison of mechanism-inspired models for particle relative biological effectiveness (RBE). Med Phys. 45(11):e925–e952.
  • Stewart JB, Chinnery PF. 2015. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 16(9):530–542. doi:10.1038/nrg3966
  • Stewart RD, Yu VK, Georgakilas AG, Koumenis C, Park JH, Carlson DJ. 2011. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res. 176(5):587–602. doi:10.1667/rr2663.1
  • Stewart RD, Streitmatter SW, Argento DC, Kirkby C, Goorley JT, Moffitt G, Jevremovic T, Sandison GA. 2015. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions. Phys Med Biol. 60(21):8249–8274. doi:10.1088/0031-9155/60/21/8249
  • Streitmatter SW, Stewart RD, Jenkins PA, Jevremovic T. 2017. DNA double strand break (DSB) induction and cell survival in iodine-enhanced computed tomography (CT). Phys Med Biol. 62(15):6164–6184. doi:10.1088/1361-6560/aa772d
  • Van Rijn K, Mayer T, Blok J, Verberne JB, Loman H. 1985. Reaction rate of OH radicals with φX174 DNA: influence of salt and scavenger. Int J Radiat Biol Relat Stud Phys Chem Med. 47(3):309–317. doi:10.1080/09553008514550451
  • Walck C. 2007. Hand-book on statistical distributions for experimentalists. Stockholm: Fysikum University of Stockholm.
  • White DR, Griffith RV, Wilson IJ. 1992. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues, ICRU Report 46. J ICRU. p. 28.
  • Zabihi A, Incerti S, Francis Z, Forozani G, Semsarha F, Moslehi A, Rezaeian P, Bernal MA. 2019. Computational approach to determine the relative biological effectiveness of fast neutrons using the Geant4-DNA toolkit and a DNA atomic model from the protein data bank. Phys Rev E. 99(5-1):052404. doi:10.1103/PhysRevE.99.052404
  • Zabihi A, Tello J, Incerti S, Francis Z, Forozani G, Semsarha F, Moslehi A, Bernal MA. 2020. Determination of fast neutron RBE using a fully mechanistic computational model. Appl Radiat Isot. 156:108952. doi:10.1016/j.apradiso.2019.108952

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.