50
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Gamma-rays induced genome wide stable mutations in cowpea deciphered through whole genome sequencing

& ORCID Icon
Received 07 Jul 2023, Accepted 30 Mar 2024, Published online: 29 Apr 2024

References

  • Ajawatanawong P, Baldauf SL. 2013. Evolution of protein indels in plants, animals and fungi. BMC Evol Biol. 13:140. doi:10.1186/1471-2148-13-140
  • Alkan C, Coe BP, Eichler EE. 2011. Genome structural variation discovery and genotyping. Nat Rev Genet. 12(5):363–376. doi:10.1038/nrg2958
  • Ambavane AR, Sawardekar SV, Sawantdesai SA, Gokhale NB. 2015. Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). J Radiat Res Appl Sci. 8(1):120–125. doi:10.1016/j.jrras.2014.12.004
  • Belfield EJ, Gan X, Mithani A, Brown C, Jiang C, Franklin K, Alvey E, Wibowo A, Jung M, Bailey K, et al. 2012. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana. Genome Res. 22(7):1306–1315. doi:10.1101/gr.131474.111
  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 456(7218):53–59. [as given in Illumina Technical Note accessed 2023 January 13]. https://www.illumina.com/Documents/products/technotes/technote_snp_caller_sequencing.pdf doi:10.1038/nature07517
  • Cingolani P, Platts A, Wang Le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 6(2):80–92. doi:10.4161/fly.19695
  • Das TR, Baisakh B, Prusti AM. 2021. Studies on mutagenic effectiveness and efficiency of gamma rays, ethyl methane sulphonate, nitrosoguanidine, maleic hydrazide and their combination in greengran (Vigna radiata L. Wilczek). Int J Curr Microbiol Appl Sci. 10(01):3354–3362. doi:10.20546/ijcmas.2021.1001.394
  • Dhanasekar P, Reddy KS. 2015. A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata). Mol Genet Genomics. 290(1):55–65. doi:10.1007/s00438-014-0899-0
  • Dhanasekar P, Reddy KS. 2018. Development of Trombay cowpea variety ‘TC-901’ amenable for summer cultivation by induced mutagenesis. Proceedings of the FAO/IAEA International Symposium on Plant Mutation Breeding and Biotechnology; Aug 27–31; Vienna, Austria. Vienna: International Atomic Energy Agency. IAEA-CN-263-170.
  • Dhanasekar P, Souframanien J, Dhole VJ, Hingane AJ, Sivasankar S. 2023. Physical mutagenesis for induction of resistance against Maruca pod borer in cowpea [Vigna unguiculata (L.) Walp]. Abstracts of International Conference on Pulses: "Smart Crops for Agricultural Sustainability and Nutritional Security; Feb 10–12; New Delhi, IN. Kanpur (IN): Indian Society of Pulses Research and Development.
  • Du Y, Feng Z, Wang J, Jin W, Wang Z, Guo T, Chen Y, Feng H, Yu L, Li W, et al. 2022. Frequency and spectrum of mutations induced by gamma rays revealed by phenotype screening and whole-genome re-sequencing in Arabidopsis thaliana. Int J Mol Sci. 23(2):654. doi:10.3390/ijms23020654
  • Du Y, Luo S, Li X, Yang J, Cui T, Li W, Yu L, Feng H, Chen Y, Mu J, et al. 2017. Identification of substitutions and small insertion-deletions induced by carbon-ion beam irradiation in Arabidopsis thaliana. Front Plant Sci. 8:1851. doi:10.3389/fpls.2017.01851
  • Dube KG, Bajaj AS, Gawande AM. 2011. Mutagenic efficiency and effectiveness of gamma rays and EMS in Cyamopsis tetragonoloba (L.) var. Sharada. Asian J Biotechnol Resour. 2:436–440.
  • Eccles LJ, O'Neill P, Lomax ME. 2011. Delayed repair of radiation induced clustered DNA damage: friend or foe? Mutat Res. 711(1–2):134–141. doi:1016/j.mrfmmm.2010.11.003.
  • Esnault MA, Legue F, Chenal C. 2010. Ionizing radiation: advances in plant response. Environ Exp Bot. 68(3):231–237. 01.007 doi:10.1016/j.envexpbot.2010
  • Felipe AS, Robert MW, Panagiotis I, Evgenia VK, Evgeny MZ. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31:3210–3212. doi:10.1093/bioinformatics/btv351
  • Feng Z, Du Y, Chen J, Chen X, Ren W, Wang L, Zhou L. 2023. Comparison and characterization of phenotypic and genomic mutations induced by a carbon-ion beam and gamma-ray irradiation in soybean (Glycine max (L.) Merr.). Int J Mol Sci. 24(10):8825. doi:10.3390/ijms24108825
  • Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci USA. 117(17):9451–9457. doi:10.1073/pnas.1921046117
  • Goyal S, Wani MR, Laskar RA, Raina A, Khan S. 2020. Mutagenic effectiveness and efficiency of individual and combination treatments of gamma rays and ethyl methanesulfonate in black gram [Vigna mungo (L.) Hepper]. Adv Zool Bot. 8(3):163–168. doi:10.13189/azb.2020.080311
  • Hase Y, Satoh K, Kitamura S, Oono Y. 2018. Physiological status of plant tissue affects the frequency and types of mutations induced by carbon-ion irradiation in Arabidopsis. Sci Rep. 8(1):1394. doi:10.1038/s41598-018-19278-1
  • Hase Y, Satoh K, Kitamura S. 2023. Comparative analysis of seed and seedling irradiation with gamma rays and carbon ions for mutation induction in Arabidopsis. Front Plant Sci. 14:1149083. doi:10.3389/fpls.2023.1149083
  • Hase Y, Satoh K, Seito H, Oono Y. 2020. Genetic consequences of acute/chronic gamma and carbon ion irradiation of Arabidopsis thaliana. Front Plant Sci. 11:336. doi:10.3389/fpls.2020.003
  • Horn LN, Ghebrehiwot HM, Shimelis HA. 2016. Selection of novel cowpea genotypes derived through gamma irradiation. Front Plant Sci. 7:262. doi:10.3389/fpls.2016.00262
  • Julia T, Renuka TH, Nanita H, Jambhulkar S. 2018. Mutagenic effectiveness and efficiency of gamma rays in Indian mustard. Int J Curr Microbiol Appl Sci. 7(3):3376–3386. doi:10.20546/ijcmas.2018.703.390
  • Kang R, Seo E, Kim G, Park A, Kim WJ, Kang S-Y, Ha B-K. 2020. Radio sensitivity of cowpea plants after gamma-ray and proton-beam irradiation. Plant Breed Biotech. 8(3):281–292. doi:10.9787/PBB.2020.8.3.281
  • Kazama Y, Ishii K, Hirano T, Wakana T, Yamada M, Ohbu S, Abe T. 2017. Different mutational function of low- and high-linear energy transfer heavy-ion irradiation demonstrated by whole-genome resequencing of Arabidopsis mutants. Plant J. 92(6):1020–1030. doi:10.1111/tpj.13738
  • Kino K, Kawada T, Hirao-Suzuki M, Morikawa M, Miyazawa H. 2020. Products of oxidative guanine damage form base pairs with guanine. Int J Mol Sci. 21(20):7645. doi:10.3390/ijms21207645
  • Kitamura S, Satoh K, Oono Y. 2022. Detection and characterization of genome-wide mutations in M1 vegetative cells of gamma-irradiated Arabidopsis. PLoS Genet. 18(1):e1009979. doi:10.1371/journal.pgen.1009979
  • Kumar S, Banks TW, Cloutier S. 2012. SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics. 2012:831460–831415. doi:10.1155/2012/831460
  • Lagoda PJL. 2012. Effects of radiation on living cells and plants. In: Shu QY, Forster BP, Nakagawa H, editors. Plant mutation breeding and biotechnology. Wallingford (UK): CABI Publishing; p. 123–134. doi:10.1079/9781780640853.0123
  • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9(4):357–359. doi:10.1038/nmeth.1923
  • Lee SW, Kwon Y-J, Baek I, Choi H-I, Ahn J-W, Kim J-B, Kang S-Y, Kim SH, Jo YD. 2021. Mutagenic effect of proton beams characterized by phenotypic analysis and whole genome sequencing in Arabidopsis. Front Plant Sci. 12:752108. doi:10.3389/fpls.2021.752108
  • Li F, Shimizu A, Nishio T, Tsutsumi N, Kato H. 2019. Comparison and characterization of mutations induced by gamma-ray and carbon-ion irradiation in rice (Oryza sativa L.) using whole-genome resequencing. G3 (Bethesda). 9(11):3743–3751. doi:10.1534/g3.119.400555
  • Li G, Chern M, Jain R, Martin JA, Schackwitz WS, Jiang L, Vega-Sánchez ME, Lipzen AM, Barry KW, Schmutz J, et al. 2016. Genome-wide sequencing of 41 rice (Oryza sativa L.) mutated lines reveals diverse mutations induced by fast-neutron irradiation. Mol Plant. 9(7):1078–1081. doi:10.1016/j.molp.2016.03.009
  • Li G, Jain R, Chern M, Pham NT, Martin JA, Wei T, Schackwitz WS, Lipzen AM, Duong PQ, Jones KC, et al. 2017. The sequences of 1504 mutants in the model rice variety kitaake facilitate rapid functional genomic studies. Plant Cell. 29(6):1218–1231. doi:10.1105/tpc.17.00154
  • Li S, Zheng YC, Cui HR, Fu HW, Shu QY, Huang JZ. 2016. Frequency and type of inheritable mutations induced by γ rays in rice as revealed by whole genome sequencing. J Zhejiang Univ Sci B. 17(12):905–915. doi:10.1631/jzus.B1600125
  • Li X, Song Y, Century K, Straight S, Ronald P, Dong X, Lassner M, Zhang Y. 2001. A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J. 27(3):235–242. doi:10.1046/j.1365-313x.2001.01084.x
  • Liu D, Xu L, Wang W, Jia S, Jin S, Gao J. 2020. OsRRM, an RNA-binding protein, modulates sugar transport in rice (Oryza sativa L.). Front Plant Sci. 11:605276. doi:10.3389/fpls.2020.605276
  • Liu J, Shen Q, Bao H. 2022. Comparison of seven SNP calling pipelines for the next-generation sequencing data of chickens. PLoS One. 17(1):e0262574. doi:10.1371/journal.pone.0262574
  • Liu J, Zhao G, Geng J, Geng Z, Dou H, Liu X, An Z, Zhang H, Wang Y. 2023. Genome-wide analysis of mutations induced by carbon ion beam irradiation in cotton. Front Plant Sci. 14:1056662. doi:10.3389/fpls.2023.1056662
  • Lomax ME, Folkes LK, O'Neill P. 2013. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol. 25(10):578–585. doi:10.1016/j.clon.2013.06.007
  • Mahaney BL, Meek K, Lees-Miller SP. 2009. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end- joining. Biochem J. 417(3):639–650. doi:10.1042/BJ20080413
  • Mba C, Afza R, Shub QY. 2012. Mutagenic radiations: X-rays, ionizing particles and ultraviolet. In: Shu QY, Forster BP, Nakagawa H, editors. Plant mutation breeding and biotechnology. Vienna (Austria): International Atomic Energy Agency; p. 83–90.
  • McCallum CM, Comai L, Greene EA, Henikoff S. 2000. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol. 123(2):439–442. doi:10.2307/4279274
  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20(9):1297–1303.,. doi:10.1101/gr.107524.110
  • Mladenov E, Iliakis G. 2011. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res. 711(1–2):61–72. doi:10.1016/j.mrfmmm.2011.02.005
  • Mohd-Yusoff NF, Ruperao P, Tomoyoshi NE, Edwards D, Gresshoff PM, Biswas B, Batley J. 2015. Scanning the effects of ethyl methanesulfonate on the whole genome of Lotus japonicus using second- generation sequencing analysis. G3 (Bethesda). 5(4):559–567. doi:10.1534/g3.114.014571
  • Morita R, Kusaba M, Iida S, Yamaguchi H, Nishio T, Nishimura M. 2009. Molecular characterization of mutations induced by gamma irradiation in rice. Genes Genet Syst. 84(5):361–370. doi:JST.JSTAGE/ggs/84.361. doi:10.1266/ggs.84.361
  • Nair R, Mehta AK. 2014. Induced mutagenesis in cowpea [Vigna unguiculata (L.) Walp] var. Arka Garima. Indian J Agric Res. 48(4):247–257. doi:10.5958/0976-058X.2014.00658.1
  • Naito K, Kusaba M, Shikazono N, Takano T, Tanaka A, Tanisaka T, Nishimura M. 2005. Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with gamma-rays and carbon ions. Genetic. 169(2):881–889. doi:10.1534/genetics.104.033654
  • Nath N, Hagenau L, Weiss S, Tzvetkova A, Jensen LR, Kaderali L, Port M, Scherthan H, Kuss AW. 2020. Genome-wide DNA alterations in X-irradiated human gingiva fibroblasts. Int J Mol Sci. 21(16):5778. doi:10.3390/ijms21165778
  • Olasupo FO, Ilori CO, Forster BP, Bado S. 2018. Selection for novel mutations induced by gamma irradiation in cowpea (Vigna Unguiculata [L] Walp). Int J Plant Breed Genet. 12(1):1–12. doi:10.3923/ijpbg.2018.1.12
  • Olasupo FO, Olumuyiwa Ilori C, Forster BP, Bado S. 2016. Mutagenic effects of gamma radiation on eight accessions of cowpea (Vigna unguiculata [L.] Walp). Am J Plant Sci. 07(02):339–351. doi:10.4236/ajps.2016.72034
  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M. 2010. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science. 327(5961):92–94. doi:10.1126/science.1180677
  • Raina A, Laskar RA, Tantray YR, Khursheed S, Wani MR, Khan S. 2020. Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Sci Rep. 10(1):3687. doi:10.1038/s41598-020-60601-6
  • Raina A, Laskar RA, Wani MR, Jan BL, Ali S, Khan S. 2022. Comparative mutagenic effectiveness and efficiency of gamma rays and sodium azide in inducing chlorophyll and morphological mutants of cowpea. Plants (Basel). 11(10):1322. doi:10.3390/plants11101322
  • Shirasawa K, Hirakawa H, Nunome T, Tabata S, Isobe S. 2016. Genome-wide survey of artificial mutations induced by ethyl methane sulfonate and gamma rays in tomato. Plant Biotechnol J. 14(1):51–60. doi:10.1111/pbi.12348
  • Smit AFA, Hubley R, Green P. 2015. RepeatMasker Open-4.0. 2013–2015. http://www.repeatmasker.org.
  • Souframanien J, Dhanasekar P. 2023. Potential of mutation breeding in genetic improvement of pulse crops. In: Penna S, Jain SM, editors. Mutation breeding for sustainable food production and climate resilience. Singapore: Springer; p. 445–485. doi:10.1007/978-981-16-9720-3_15
  • Souframanien J, Saha AJ, Dhole VJ, Dhanasekar P, Golu M. 2020. Genetic improvement of pulse crops through induced mutation and biotechnological approaches. Indian Assoc Nucl Chem Allied Sci. XV:71–80.
  • Stadler LJ. 1928. Genetic effects of X-rays in maize. Proc Natl Acad Sci U S A. 14(1):69–75. doi:10.1073/pnas.14.1.69
  • Tanaka A. 2018. Ion beam-induced mutation in plants. In: Kudo H, editor. Radiation applications. An advanced course in nuclear engineering. Vol. 7. Singapore: Springer. doi:10.1007/978-981-10-7350-2_13
  • Tolosa S, Sansón JA, Hidalgo A. 2019. Theoretical study of adenine to guanine transition assisted by water and formic acid using steered molecular dynamic simulations. Front Chem. 7:414. doi:10.3389/fchem.2019.00414
  • Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu Y-C, Liu Z, Frommer WB, Ma JF, Chen L-Q, et al. 2020. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev. 7(11):1776–1786.,. doi:10.1093/nsr/nwaa110
  • Weng ML, Becker C, Hildebrandt J, Neumann M, Rutter MT, Shaw RG, Weigel D, Fenster CB. 2019. Fine-grained analysis of spontaneous mutation spectrum and frequency in Arabidopsis thaliana. Genetics. 211(2):703–714. doi:10.1534/genetics.118.301721
  • Xu X, Bai G. 2015. Whole-genome resequencing: changing the paradigms of SNP detection, molecular mapping and gene discovery. Mol Breed. 35(1):33. doi:10.1007/s11032-015-0240-6
  • Yamaguchi H, Hase Y, Tanaka A, Shikazono N, Degi K, Shimizu A, Morishita T. 2009. Mutagenic effects of ion beam irradiation on rice. Breed Sci. 59(2):169–177. doi:10.1270/jsbbs.59.169
  • Yang G, Luo W, Zhang J, Yan X, Du Y, Zhou L, Li W, Wang H, Chen Z, Guo T. 2019. Genome-wide comparisons of mutations induced by carbon-ion beam and gamma-rays irradiation in rice via resequencing multiple mutants. Front Plant Sci. 10:1514. doi:10.3389/fpls.2019.01514
  • Yoshihara R, Hase Y, Sato R, Takimoto K, Narumi I. 2010. Mutational effects of different LET radiations in rpsL transgenic Arabidopsis. Int J Radiat Biol. 86(2):125–131. doi:10.3109/09553000903336826
  • Yoshihara R, Nozawa S, Hase Y, Narumi I, Hidema J, Sakamoto AN. 2013. Mutational effects of gamma-rays and carbon ion beams on Arabidopsis seedlings. J Radiat Res. 54(6):1050–1056. doi:10.1093/jrr/rrt074
  • Zheng Y, Li S, Huang J, Fan L, Shu Q. 2020a. Identification and characterization of γ-ray induced mutations in rice cytoplasmic genomes by whole-genome sequencing. Cytogenet Genome Res. 160(2):100–109. doi:10.1159/000506033
  • Zheng Y, Li S, Huang J, Fu H, Zhou L, Furusawa Y, Shu Q. 2020b. Mutagenic effect of three ion beams on rice and identification of heritable mutations by whole genome sequencing. Plants (Basel). 9(5):551. doi:10.3390/plants9050551
  • Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. 2013. The MaSuRCA genome assembler. Bioinformatics. 29(21):2669–2677. doi:10.1093/bioinformatics/btt476

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.