23
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Gamma irradiation in modulating arsenic bioremediation potential of Pseudomonas sp. AK1 and AK9

, & ORCID Icon
Received 02 Apr 2023, Accepted 11 Apr 2024, Published online: 24 Apr 2024

References

  • Ali AA, Amid A, Muhamad A. 2021. Gamma ray mutagenesis on bacteria isolated from shrimp farm mud for microbial fuel cell enhancement and degradation of organic waste. In: Amid, A., editor, Multifaceted Protocols in Biotechnology, 2. Springer, Cham. doi:10.1007/978-3-030-75579-9_7
  • Anderson G, Williams J, Hille R. 1992. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem. 267(33):23674–23682. doi:10.1016/S0021-9258(18)35891-5
  • Ashraf S, Siddiqa A, Shahida S, Qaisar S. 2019. Titanium-based nanocomposite materials for arsenic removal from water: A review. Heliyon. 5(5):e01577. May 15doi:10.1016/j.heliyon.2019.e01577
  • Banerjee S, Datta S, Chattyopadhyay D, Sarkar P. 2011. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J Environ Sci Health A Tox Hazard Subst Environ Eng. 46(14):1736–1747. doi:10.1080/10934529.2011.623995
  • Bhattacharya A, Sahu S, Sahu N, Das A, Das C, John V, Sarkar S, Duttagupta S, Bhattacharya J, Mukherjee A, et al. 2022. Influence of mass-awareness campaign on community behavior pattern changes for safe drinking water availability in a groundwater arsenic-affected area of South Asia. Groundwater Sustainable Dev. 18:100766. doi:10.1016/j.gsd.2022.100766
  • Bhattacharya P, Chatterjee D, Jacks G. 1997. Occurrence of arsenic contaminated groundwater in alluvial aquifers from Delta Plains, Eastern India: options for safe drinking water supply. Int J Water Resour Manag. 13(1):79–92. doi:10.1080/07900629749944
  • Biswas R, Anshuman A, Samal BN. 2023. A review on arsenic removal from wastewater using carbon nanotube and graphene-based nanomaterials as adsorbents. Nanotechnol Environ Eng. 8(4):1033–1046. doi:10.1007/s41204-023-00332-x
  • Boruah H, Tyagi N, Gupta SK, Chabukdhara M, Malik T. 2023. Understanding the adsorption of iron oxide nanomaterials in magnetite and bimetallic form for the removal of arsenic from water. Front Environ Sci. 11:1104320. doi:10.3389/fenvs.2023.1104320
  • Byrne RT, Klingele AJ, Cabot EL, Schackwitz WS, Martin JA, Martin J, Wang Z, Wood EA, Pennacchio C, Pennacchio LA, et al. 2014. Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair. Elife. 3:e01322. doi:10.7554/eLife.01322 PMID: 24596148; PMCID: PMC3939492.
  • Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborti AK, Basu GK. 2003. Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect. 111(9):1194–1201. doi:10.1289/ehp.5966
  • Chakraborty M, Sarkar S, Mukherjee A, Shamsudduha M, Ahmed KM, Bhattacharya A, Mitra A. 2020. Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: infusing physically-based model with machine learning. Sci Total Environ. 748:141107. doi:10.1016/j.scitotenv.2020.141107
  • Chang J-S, Yoon I-H, Lee J-H, Kim K-R, An J, Kim K-W. 2010. Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health. 32(2):95–105. doi:10.1007/s10653-009-9268-z
  • Dey U, Chatterjee S, Mondal NK. 2016. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep . 10:1–7. doi:10.1016/j.btre.2016.02.002
  • Dube R, Singh S, Gupte A, Modi A. 2023. Arsenic Contamination in Bihar, India: exploring the impact, mitigation, and bioremediation strategies. PREPRINT (Version 1) Available at Research Square. doi:10.21203/rs.3.rs-3286620/v1
  • Duttagupta S, Bhanja SN, Dutta A, Sarkar S, Chakraborty M, Ghosh A, Mondal D, Mukherjee A. 2021. Impact of Covid-19 lockdown on availability of drinking water in the arsenic-affected Ganges River Basin. Int J Environ Res Public Health. 18(6):2832. doi:10.3390/ijerph18062832
  • Gupte T, Pradeep T. 2023. New materials for arsenic and fluoride removal. Technological Solutions for Water Sustainability: Challenges and Prospects. 73–84.
  • Karn SK, Pan X. 2017. Diversity of arsenite oxidizing gene (aioA gene) from arsenic rich gold mine dump of Xinjiang. China. BIOINFOLET. 14(2):149–151.
  • Karn SK, Pan X, . 2016. Biotransformation of As (III) to As (V) and their stabilization in soil with Bacillus sp. XS2 isolated from gold mine tailing of Xinjiang, China. AIMS Environ Sci. 3(4):592–603. doi:10.3934/environsci.2016.4.592
  • Kinegam S, Yingprasertchai T, Tanasupawat S, Leepipatpiboon N, Akaracharanya A, Kim K-W. 2008. Isolation and characterization of arsenite-oxidizing bacteria from arsenic-contaminated soils in Thailand. World J Microbiol Biotechnol. 24(12):3091–3096. doi:10.1007/s11274-008-9821-4
  • Kumari N, Sareen S, Verma M, Sharma S, Sharma A, Sohal HS, Mehta SK, Park J, Mutreja V. 2022. Zirconia-based nanomaterials: recent developments in synthesis and applications. Nanoscale Adv. 4(20):4210–4236. doi:10.1039/d2na00367h
  • Liao VH-C, Chu Y-J, Su Y-C, Hsiao S-Y, Wei C-C, Liu C-W, Liao C-M, Shen W-C, Chang F-J. 2011. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol. 123(1-2):20–29. doi:10.1016/j.jconhyd.2010.12.003
  • Maiti A, Basu JK, De S. 2010. Removal of arsenic from synthetic and natural groundwater using acid-activated laterite. Env Prog and Sustain Energy. 29(4):457–470. doi:10.1002/ep.10434
  • Maiti A, Dasgupta S, Basu JK, De S. 2007. Adsorption of arsenite using natural laterite as adsorbent. Sep. Purif. Technol. 55(3):350–359. doi:10.1016/j.seppur.2007.01.003
  • Maiti A, DasGupta S, Basu JK, De S. 2008. Batch and column study: adsorption of arsenate using untreated laterite as adsorbent. Ind Eng Chem Res. 47(5):1620–1629. doi:10.1021/ie070908z
  • Mukherjee A, Fryar AE, Scanlon BR, Bhattacharya P, Bhattacharya A. 2011. Elevated arsenic in deeper groundwater of the western Bengal Basin, India: extent and controls from regional to local scale. Appl. Geochem. 26(4):600–613. doi:10.1016/j.apgeochem.2011.01.017
  • Mukherjee A, Sarkar S, Chakraborty M, Duttagupta S, Bhattacharya A, Saha D, Bhattacharya P, Mitra A, Gupta S. 2021. Occurrence, predictors and hazards of elevated groundwater arsenic across india through field observations and regional-scale ai-based modeling. Sci Total Environ. 759:143511. doi:10.1016/j.scitotenv.2020.143511
  • Mukherjee S, Gupte T, Jenifer SK, Thomas T, Pradeep T. 2019a. Arsenic in water: fundamentals of measurement and remediation. Encyclopedia of Water: Science, Technology, and Society, p. 1–11.
  • Mukherjee S, Gupte T, Jenifer SK, Thomas T, Pradeep T. 2019b. Arsenic in water: speciation, sources, distribution, and toxicology. Encyclopedia of Water: Science, Technology, and Society, p. 1–17.
  • Pandey N, Bhatt R. 2015. Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J Basic Microbiol. 55(11):1275–1286. doi:10.1002/jobm.201400723
  • Rahman A, Nahar N, Nawani NN, Jass J, Desale P, Kapadnis BP, Hossain K, Saha AK, Ghosh S, Olsson B, et al. 2014. Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J Environ Sci Health A Tox Hazard Subst Environ Eng. 49(12):1349–1360. doi:10.1080/10934529.2014.928247
  • Rosen BP. 2002. Biochemistry of arsenic detoxification. FEBS Lett. 529(1):86–92. doi:10.1016/s0014-5793(02)03186-1
  • Satyapal GK, Kumar N. 2021. Arsenic: source, distribution, toxicity and bioremediation. In N. Kumar, editor, Arsenic Toxicity: Challenges and Solutions. Singapore: Springer; p. 153–163. doi:10.1007/978-981-33-6068-6_6
  • Satyapal GK, Kumar R, Kumar S, Shankar Singh, R, Kumar Ranjan, R, Kumar, K, Kumar Jha A, Pal Singh N, Haque R, Shanke A, Kumar N, (2023). Cloning and functional characterization of arsenite oxidase (aoxB) gene associated with arsenic transformation in Pseudomonas sp. strain AK9. Gene. 850 146926. doi:10.1016/j.gene.2022.146926
  • Satyapal GK, Mishra SK, Srivastava A, Ranjan RK, Prakash K, Haque R, Kumar N. 2018. Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnol Rep 17:117–125. doi:10.1016/j.btre.2018.02.002
  • Satyapal G, Rani S, K, M, K, N. 2016. Potential role of arsenic resistant bacteria in bioremediation: current status and future prospects. J Microb Biochem Technol. 8(3):256–258. doi:10.4172/1948-5948.1000294
  • Soghomonyan DR, Margaryan A, Trchounian K, Ohanyan K, Badalyan H, Trchounian A. 2018. The effects of low doses of gamma-radiation on growth and membrane activity of Pseudomonas aeruginosa GRP3 and Escherichia coli M17. Cell Biochem Biophys. 76(1–2):209–217. doi:10.1007/s12013-017-0831-4
  • Tsai S-L, Singh S, Chen W. 2009. Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol. 20(6):659–667. doi:10.1016/j.copbio.2009.09.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.