0
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Comparative analysis of the yields of dicentrics and chromosomal translocations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 15 Nov 2023, Accepted 29 May 2024, Published online: 02 Jul 2024

References

  • Anderson RM, Marsden SJ, Wright EG, Kadhim MA, Goodhead DT, Griffin CS. 2000. Complex chromosome aberrations in peripheral blood lymphocytes as a potential biomarker of exposure to high-LET alpha-particles. Int J Radiat Biol. 76(1):31–42. doi:10.1080/095530000138989
  • Anderson RM, Stevens DL, Sumption ND, Townsend KM, Goodhead DT, Hill MA. 2007. Effect of linear energy transfer (LET) on the complexity of alpha-particle-induced chromosome aberrations in human CD34+ cells. Radiat Res. 167(5):541–550. doi:10.1667/RR0813.1
  • Barquinero JF, Abe Y, Aneva N, Endesfelder D, Georgieva D, Goh V, Gregoire E, Hristova R, Lee Y, Martínez JS, et al. 2023. RENEB inter-laboratory comparison 2021: the FISH-based translocation assay. Radiat Res. 199(6):583–590. doi:10.1667/RADE-22-00203.1
  • Barquinero JF, Cigarrán S, Caballín MR, Braselmann H, Ribas M, Egozcue J, Barrios L. 1999. Comparison of X-ray dose–response curves obtained by chromosome painting using conventional and PAINT nomenclatures. Int J Radiat Biol. 75(12):1557–1566. doi:10.1080/095530099139160
  • Barquinero JF, Knehr S, Braselmann H, Figel M, Bauchinger M. 1998. DNA-proportional distribution of radiation-induced chromosome aberrations analysed by fluorescence in situ hybridization painting of all chromosomes of a human female karyotype. Int J Radiat Biol. 74(3):315–323. doi:10.1080/095530098141456
  • Bauchinger M, Schmid E, Zitzelsberger H, Braselmann H, Nahrstedt U. 1993. Radiation-induced chromosome aberrations analysed by two-colour fluorescence in situ hybridization with composite whole chromosome-specific DNA probes and a pancentromeric DNA probe. Int J Radiat Biol. 64(2):179–184. doi:10.1080/09553009314551271
  • Chiu SM, Friedman LR, Xue LY, Oleinick NL. 1986. Modification of DNA damage in transcriptionally active vs. bulk chromatin. Int J Radiat Oncol Biol Phys. 12(8):1529–1532. doi:10.1016/0360-3016(86)90209-9
  • Cornforth MN. 2001. Analyzing radiation-induced complex chromosome rearrangements by combinatorial painting. Radiat Res. 155(5):643–659. doi:10.1667/0033-7587(2001)155[0643:ARICCR]2.0.CO;2
  • Cremer T, Cremer C. 2001. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2(4):292–301. doi:10.1038/35066075
  • Cremer T, Popp S, Emmerich P, Lichter P, Cremer C. 1990. Rapid metaphase and interphase detection of radiation-induced chromosome aberrations in human lymphocytes by chromosomal suppression in situ hybridization. Cytometry. 11(1):110–118. doi:10.1002/cyto.990110113
  • Darroudi F, Fomina J, Meijers M, Natarajan AT. 1998. Kinetics of the formation of chromosome aberrations in X-irradiated human lymphocytes, using PCC and FISH. Mutat Res. 404(1–2):55–65. doi:10.1016/s0027-5107(98)00095-5
  • Duran A, Barquinero JF, Caballín MR, Ribas M, Puig P, Egozcue J, Barrios L. 2002. Suitability of FISH painting techniques for the detection of partial-body irradiations for biological dosimetry. Radiat Res. 157(4):461–468. doi:10.1667/0033-7587(2002)157[0461:sofptf]2.0.co;2
  • Edwards AA, Lindholm C, Darroudi F, Stephan G, Romm H, Barquinero J, Barrios L, Caballin MR, Roy L, Whitehouse CA, et al. 2005. Review of translocations detected by FISH for retrospective biological dosimetry applications. Radiat Prot Dosimetry. 113(4):396–402. doi:10.1093/rpd/nch452
  • Falk M, Lukásová E, Kozubek S. 2008. Chromatin structure influences the sensitivity of DNA to gamma-radiation. Biochim Biophys Acta. 1783(12):2398–2414. doi:10.1016/j.bbamcr.2008.07.010
  • Fernández JL, Campos A, Goyanes V, Losada C, Veiras C, Edwards AA. 1995. X-ray biological dosimetry performed by selective painting of human chromosomes 1 and 2. Int J Radiat Biol. 67(3):295–302. doi:10.1080/09553009514550351
  • Friedman DA, Tait L, Vaughan AT. 2016. Influence of nuclear structure on the formation of radiation-induced lethal lesions. Int J Radiat Biol. 92(5):229–240. doi:10.3109/09553002.2016.1144941
  • Hall EJ, Giaccia AJ. 2006. Radiobiology for the radiologist. 6th ed. Philadelphia (PA): Lippincott Williams and Wilkins.
  • Holley WR, Mian IS, Park SJ, Rydberg B, Chatterjee A. 2002. A model for interphase chromosomes and evaluation of radiation-induced aberrations. Radiat Res. 158(5):568–580. doi:10.1667/0033-7587(2002)158[0568:amfica]2.0.co;2
  • [IAEA] International Atomic Energy Agency. 2001. Cytogenetic analysis for radiation dose assessment. Austria: IAEA.
  • [IAEA] International Atomic Energy Agency. 2011. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. Austria: IAEA.
  • Iliakis G, Mladenov E, Mladenova V. 2019. Necessities in the processing of DNA double strand breaks and their effects on genomic instability and cancer. Cancers. 11(11):1671. doi:10.3390/cancers11111671
  • Iliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, Wu W, Guan J, Terzoudi G, Pantelias G. 2004. Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res. 104(1–4):14–20. doi:10.1159/000077461
  • [ISCN] An International System for Human Cytogenetic Nomenclature. 1985. Report of the Standing Committee on Human Cytogenetic Nomenclature. Birth Defects Orig Artic Ser. 21(1):1–117.
  • Jeffreys H. 1961. Theory of probability. 3rd ed. Oxford (UK): Clarendon Press.
  • Karlis D, Ntzoufras I. 2003. Analysis of sports data by using bivariate Poisson models. J R Stat Soc D. 52(3):381–393. doi:10.1111/1467-9884.00366
  • Kass RE, Raftery AE. 1995. Bayes factors. J Am Stat Assoc. 90(430):773–795. doi:10.1080/01621459.1995.10476572
  • Knehr S, Huber R, Braselmann H, Schraube H, Bauchinger M. 1999. Multicolour FISH painting for the analysis of chromosomal aberrations induced by 220 kV X-rays and fission neutrons. Int J Radiat Biol. 75(4):407–418. doi:10.1080/095530099140320
  • Knehr S, Zitzelsberger H, Bauchinger M. 1998. FISH-based analysis of radiation-induced chromosomal aberrations using different nomenclature systems. Int J Radiat Biol. 73(2):135–141. doi:10.1080/095530098142509
  • Kodama Y, Nakano M, Ohtaki K, Delongchamp R, Awa AA, Nakamura N. 1997. Estimation of minimal size of translocated chromosome segments detectable by fluorescence in situ hybridization. Int J Radiat Biol. 71(1):35–39. doi:10.1080/095530097144391
  • Kruschke J. 2014. Doing Bayesian data analysis: a tutorial with R, JAGS, and Stan. 2nd ed. Boston (MA): Academic Press/Elsevier.
  • Lee YH, Lee Y, Yoon HJ, Yang SS, Joo HM, Kim JY, Cho SJ, Jo WS, Jeong SK, Oh SJ, et al. 2021. An intercomparison exercise to compare scoring criteria and develop image databank for biodosimetry in South Korea. Int J Radiat Biol. 97(9):1199–1205. doi:10.1080/09553002.2021.1941384
  • Lindholm C, Luomahaara S, Koivistoinen A, Ilus T, Edwards AA, Salomaa S. 1998. Comparison of dose–response curves for chromosomal aberrations established by chromosome painting and conventional analysis. Int J Radiat Biol. 74(1):27–34. doi:10.1080/095530098141690
  • Liu G. 2022. Revision of cytogenetic dosimetry in the IAEA manual 2011 based on data about radio-sensitivity and dose-rate findings contributing. FASEB J. 36(11):e22621. doi:10.1096/fj.202200769RR
  • Lucas JN, Awa A, Straume T, Poggensee M, Kodama Y, Nakano M, Ohtaki K, Weier HU, Pinkel D, Gray J. 1992. Rapid translocation frequency analysis in humans decades after exposure to ionizing radiation. Int J Radiat Biol. 62(1):53–63. doi:10.1080/09553009214551821
  • Lucas JN, Chen AM, Sachs RK. 1996. Theoretical predictions on the equality of radiation-produced dicentrics and translocations detected by chromosome painting. Int J Radiat Biol. 69(2):145–153. doi:10.1080/095530096145977
  • Magnander K, Hultborn R, Claesson K, Elmroth K. 2010. Clustered DNA damage in irradiated human diploid fibroblasts: influence of chromatin organization. Radiat Res. 173(3):272–282. doi:10.1667/RR1891.1
  • Młynarczyk D, Puig P, Armero C, Gómez-Rubio V, Barquinero JF, Pujol-Canadell M. 2022. Radiation dose estimation with time-since-exposure uncertainty using the γ-H2AX biomarker. Sci Rep. 12(1):19877. doi:10.1038/s41598-022-24331-1
  • Moquet JE, Edwards AA, Lloyd DC, Hone P. 2000. The use of FISH chromosome painting for assessment of old doses of ionising radiation. Radiat Prot Dosimetry. 88(1):27–33. doi:10.1093/oxfordjournals.rpd.a033016
  • Nikjoo H, O'Neill P, Terrissol M, Goodhead DT. 1999. Quantitative modelling of DNA damage using Monte Carlo track structure method. Radiat Environ Biophys. 38(1):31–38. doi:10.1007/s004110050135
  • Oleinick NL, Balasubramaniam U, Xue L, Chiu S. 1994. Nuclear structure and the microdistribution of radiation damage in DNA. Int J Radiat Biol. 66(5):523–529. doi:10.1080/09553009414551561
  • Plummer M. 2003. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A, editors. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003); Mar 20–22; Technische Universität Wien, Vienna, Austria.
  • Pujol M, Barrios L, Puig P, Caballín MR, Barquinero JF. 2016. A new model for biological dose assessment in cases of heterogeneous exposures to ionizing radiation. Radiat Res. 185(2):151–162. doi:10.1667/RR14145.1
  • Sachs RK, Awa A, Kodama Y, Nakano M, Ohtaki K, Lucas JN. 1993. Ratios of radiation-produced chromosome aberrations as indicators of large-scale DNA geometry during interphase. Radiat Res. 133(3):345–350. doi:10.2307/3578220
  • Sachs RK, Brenner DJ, Chen AM, Hahnfeldt P, Hlatky LR. 1997. Intra-arm and interarm chromosome intrachanges: tools for probing the geometry and dynamics of chromatin. Radiat Res. 148(4):330–340. doi:10.2307/3579518
  • Saloua KS, Sonia G, Pierre C, Léon S, Darel HJ. 2014. The relative contributions of DNA strand breaks, base damage and clustered lesions to the loss of DNA functionality induced by ionizing radiation. Radiat Res. 181(1):99–110. doi:10.1667/RR13450.1
  • Savage JR, Papworth DG. 1982. Frequency and distribution studies of asymmetrical versus symmetrical chromosome aberrations. Mutat Res. 95(1):7–18. doi:10.1016/0027-5107(82)90062-8
  • Savage JR, Simpson P. 1994. On the scoring of FISH-“painted” chromosome-type exchange aberrations. Mutat Res. 307(1):345–353. doi:10.1016/0027-5107(94)90308-5
  • Schmid E, Zitzelsberger H, Braselmann H, Gray JW, Bauchinger M. 1992. Radiation-induced chromosome aberrations analysed by fluorescence in situ hybridization with a triple combination of composite whole chromosome-specific DNA probes. Int J Radiat Biol. 62(6):673–678. doi:10.1080/09553009214552621
  • Stewart RD. 2018. Induction of DNA damage by light ions relative to 60Co γ-rays. Int J Part Ther. 5(1):25–39. doi:10.14338/IJPT-18-00030
  • Tello Cajiao JJ, Carante MP, Bernal Rodriguez MA, Ballarini F. 2017. Proximity effects in chromosome aberration induction by low-LET ionizing radiation. DNA Repair. 58:38–46. doi:10.1016/j.dnarep.2017.08.007
  • Tucker JD, Morgan WF, Awa AA, Bauchinger M, Blakey D, Cornforth MN, Littlefield LG, Natarajan AT, Shasserre C. 1995. PAINT: a proposed nomenclature for structural aberrations detected by whole chromosome painting. Mutat Res. 347(1):21–24. doi:10.1016/0165-7992(95)90028-4