0
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A simulation study on the effect of penetration of gold nanoparticles in the cytoplasm of healthy eye organs on dose enhancement of brachytherapy

ORCID Icon & ORCID Icon
Received 29 Mar 2024, Accepted 11 Jul 2024, Published online: 26 Jul 2024

References

  • Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SRK, Youn HS, Eom S, Gurunathan S. 2010. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol. 8(1):1–15. doi:10.1186/1477-3155-8-16
  • Bi J, Areecheewakul S, Li Y, Yang S, Zhang Y, Ebeid K, Li L, Thiel KW, Zhang J, Dai D, et al. 2019. MTDH/AEG-1 downregulation using pristimerin-loaded nanoparticles inhibits Fanconi anemia proteins and increases sensitivity to platinum-based chemotherapy. Gynecol Oncol. 155(2):349–358. doi:10.1016/j.ygyno.2019.08.014
  • Chen YS, Hung YC, Liau I, Huang GS. 2009. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 4(8):858–864. doi:10.1007/s11671-009-9334-6
  • Cho SH. 2005. TH‐C‐T‐6C‐04: estimation of tumor dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Med Phys. 32(6Part21):2162–2162. doi:10.1118/1.1998660
  • Cui L, Her S, Borst GR, Bristow RG, Jaffray DA, Allen C. 2017. Radiosensitization by gold nanoparticles: Will they ever make it to the clinic? Radiother Oncol. 124(3):344–356. doi:10.1016/j.radonc.2017.07.007
  • Fadia BS, Mokhtari-Soulimane N, Meriem B, Wacila N, Zouleykha B, Karima R, Soulimane T, Tofail SAM, Townley H, Thorat ND. 2022. Histological injury to rat brain, liver, and kidneys by gold nanoparticles is dose-dependent. ACS Omega. 7(24):20656–20665. doi:10.1021/acsomega.2c00727
  • Goddard ZR, Marín MJ, Russell DA, Searcey M. 2020. Active targeting of gold nanoparticles as cancer therapeutics. Chem Soc Rev. 49(23):8774–8789. doi:10.1039/d0cs01121e
  • Gündüz K, Shields CL, Shields JA, Cater J, Freire JE, Brady LW. 1999. Radiation complications and tumor control after plaque radiotherapy of choroidal melanoma with macular involvement. Am J Ophthalmol. 127(5):579–589. doi:10.1016/s0002-9394(98)00445-0
  • Hainfeld JF, Slatkin DN, Smilowitz HM. 2004. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 49(18):N309–N315. doi:10.1088/0031-9155/49/18/n03
  • He C, Chow JC, 2016. Gold nanoparticle DNA damage in radiotherapy: a Monte Carlo study. AIMS Bioengineering. 3(3):352–361. doi:10.3934/bioeng.2016.3.352
  • Her S, Jaffray DA, Allen C. 2017. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv Drug Deliv Rev. 109:84–101. doi:10.1016/j.addr.2015.12.012
  • Hernández-Camarero P, Amezcua-Hernández V, Jiménez G, García MA, Marchal JA, Perán M. 2020. Clinical failure of nanoparticles in cancer: mimicking nature’s solutions. Nanomedicine . 15(23):2311–2324. doi:10.2217/nnm-2020-0234
  • Hillyer JF, Albrecht RM. 2001. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci. 90(12):1927–1936. doi:10.1002/jps.1143
  • Hosseini SA, Kardani A, Yaghoobi H. 2023. A comprehensive review of cancer therapies mediated by conjugated gold nanoparticles with nucleic acid. Int J Biol Macromol. 253(Pt 5):127184. doi:10.1016/j.ijbiomac.2023.127184
  • Kesharwani P, Ma R, Sang L, Fatima M, Sheikh A, Abourehab MAS, Gupta N, Chen Z-S, Zhou Y. 2023. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol Cancer. 22(1):98. doi:10.1186/s12943-023-01798-8
  • Khlebtsov N, Dykman L. 2011. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 40(3):1647–1671. doi:10.1039/c0cs00018c
  • Kudgus RA, Walden CA, McGovern RM, Reid JM, Robertson JD, Mukherjee P. 2014. Tuning pharmacokinetics and biodistribution of a targeted drug delivery system through incorporation of a passive targeting component. Sci Rep. 4(1):5669. doi:10.1038/srep05669
  • Laprise‐Pelletier M, Simão T, Fortin MA. 2018. Gold nanoparticles in radiotherapy and recent progress in nanobrachytherapy. Adv Healthc Mater. 7(16):e1701460. doi:10.1002/adhm.201701460
  • Lechtman E, Chattopadhyay N, Cai Z, Mashouf S, Reilly R, Pignol JP. 2011. Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys Med Biol. 57(1):287–4647. doi:10.1088/0031-9155/56/15/001
  • Lechtman E, Mashouf S, Chattopadhyay N, Keller BM, Lai P, Cai Z, Reilly RM, Pignol J-P. 2013. A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Phys Med Biol. 58(10):3075–3087. doi:10.1088/0031-9155/58/10/3075
  • Lesperance M, Inglis‐Whalen M, Thomson R. 2014. Model‐based dose calculations for COMS eye plaque brachytherapy using an ­anatomically realistic eye phantom. Med Phys. 41(2):021717. doi:10.1118/1.4861715
  • Lim ZZJ, Li JEJ, Ng CT, Yung LYL, Bay BH. 2011. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin. 32(8):983–990. doi:10.1038/aps.2011.82
  • Masoudi SF, Daryabari FS, Rasouli FS. 2020. Distribution modeling of nanoparticles for brachytherapy of human eye tumor. EJNMMI Phys. 7(1):53. doi:10.1186/s40658-020-00321-y
  • Miguel D, de Frutos JM, López-Lara F, Alonso P, Diezhandino P, Saornil MA, García C. 2019. Treatment planning considerations for 125I eye plaque brachytherapy. J Contemp Brachytherapy. 11(3):280–284. doi:10.5114/jcb.2019.86370
  • Moeendarbari S, Tekade R, Mulgaonkar A, Christensen P, Ramezani S, Hassan G, Jiang R, Öz OK, Hao Y, Sun X. 2016. Theranostic nanoseeds for efficacious internal radiation therapy of unresectable solid tumors. Sci Rep. 6(1):20614. doi:10.1038/srep20614
  • Nag S, Quivey JM, Earle JD, Followill D, Fontanesi J, Finger PT, Society AB, 2003. The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas. Int J Radiat Oncol Biol Phys. 56(2):544–555. doi:10.1016/s0360-3016(03)00006-3
  • Ngwa W, Korideck H, Kassis AI, Kumar R, Sridhar S, Makrigiorgos GM, Cormack RA. 2013. In vitro radiosensitization by gold nanoparticles during continuous low-dose-rate gamma irradiation with I-125 brachytherapy seeds. Nanomedicine. 9(1):25–27. doi:10.1016/j.nano.2012.09.001
  • Ngwa W, Kumar R, Sridhar S, Korideck H, Zygmanski P, Cormack RA, Berbeco R, Makrigiorgos GM. 2014. Targeted radiotherapy with gold nanoparticles: current status and future perspectives. Nanomedicine (Lond). 9(7):1063–1082. doi:10.2217/nnm.14.55
  • NUDAT 2.0, National Nuclear Data Center (NNDC). (2015) Brookhaven National Laboratory.
  • Park K. 2013. Facing the truth about nanotechnology in drug delivery. ACS Nano. 7(9):7442–7447. doi:10.1021/nn404501g
  • Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, Davidson R, Geso M. 2009. Gold nanoparticles: clinical nanomedicine, radiation oncology–enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine. 5(2):136–142. doi:10.1016/j.nano.2009.01.014
  • Rasouli FS, Masoudi SF. 2019. Monte Carlo investigation of the effect of gold nanoparticles’ distribution on cellular dose enhancement. Rad Phys Chem. 158:6–12. doi:10.1016/j.radphyschem.2019.01.006
  • Rasouli FS, Masoudi SF, Asadi S. 2019. On the importance of modeling gold nanoparticles distribution in dose-enhanced radiotherapy. Int J Nanomed. 14:5865–5874. doi:10.2147/IJN.S214517
  • Rasouli FS, Masoudi SF, Keshazare S, Jette D. 2015. Effect of elemental compositions on Monte Carlo dose calculations in proton therapy of eye tumors. Rad Phys Chem. 117:112–119. doi:10.1016/j.radphyschem.2015.08.001
  • Seniwal B, Thipe VC, Singh S, Fonseca TC, Freitas de Freitas L. 2021. Recent advances in brachytherapy using radioactive nanoparticles: an alternative to seed-based brachytherapy. Front Oncol. 11:766407. doi:10.3389/fonc.2021.766407
  • Sonntag T, Froemel F, Stamer WD, Ohlmann A, Fuchshofer R, Breunig M. 2021. Distribution of gold nanoparticles in the anterior chamber of the eye after intracameral injection for glaucoma therapy. Pharmaceutics. 13(6):901. doi:10.3390/pharmaceutics13060901
  • Stefančíková L, Porcel E, Eustache P, Li S, Salado D, Marco S, Guerquin-Kern J-L, Réfrégiers M, Tillement O, Lux F, et al. 2014. Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells. Cancer Nanotechnol. 5(1):6. doi:10.1186/s12645-014-0006-6
  • Terentyuk GS, Maslyakova GN, Suleymanova LV, Khlebtsov BN, Kogan BY, Akchurin GG, Shantrocha AV, Maksimova IL, Khlebtsov NG, Tuchin VV. 2009. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at ­intravenous particle delivery. J Biophotonics. 2(5):292–302. doi:10.1002/jbio.200910005
  • Xie WZ, Friedland W, Li WB, Li CY, Oeh U, Qiu R, Li JL, Hoeschen C. 2015. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Phys Med Biol. 60(16):6195–6212. doi:10.1088/0031-9155/60/16/6195
  • Zygmanski P, Sajo E. 2016. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays. Br J Radiol. 89(1059):20150200. doi:10.1259/bjr.20150200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.