152
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synergism between Bacillus thuringiensis and Xenorhabdus nematophila against resistant and susceptible Plutella xylostella (Lepidoptera: Plutellidae)

, , , , &
Pages 1411-1419 | Received 12 Mar 2016, Accepted 06 Jul 2016, Published online: 03 Sep 2016

References

  • Baur, M. E., Kaya, H. K., & Strong, D. R. (1998). Foraging ants as scavengers on entomopathogenic nematode-killed insects. Biological Control, 12, 231–236. doi: 10.1006/bcon.1998.0635
  • Benfarhat-Touzri, D., Ben Amira, A., Ben Khedher, S., Givaudan, A., Jaoua, S., & Tounsi, S. (2014). Combinatorial effect of Bacillus thuringiensis kurstaki and Photorhabdus luminescens against Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Basic Microbiology, 54, 1160–1165. doi: 10.1002/jobm.201300142
  • Bowen, D., Rocheleau, T. A., Blackburn, M., Andreev, O., Golubeva, E., Bhartia, R., & ffrench-Constant, R. H. (1998). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science, 280, 2129–2132. doi: 10.1126/science.280.5372.2129
  • Bowen, D. J., & Ensign, J. C. (1998). Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Applied and Environmental Microbiology, 64, 3029–3035.
  • Broderick, N. A., Goodman, R. M., Raffa, K. F., & Handelsman, J. (2000). Synergy between Zwittermicin A and Bacillus thuringiensis subsp. kurstaki against gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology, 29, 101–107. doi: 10.1603/0046-225X-29.1.101
  • Busby, J. N., Panjikar, S., Landsberg, M. J., Hurst, M. R. H., & Shaun, L. J. (2013). The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature, 501, 547–550. doi: 10.1038/nature12465
  • Cao, J., Tang, J. D., Strizhov, N., Shelton, A. M., & Earle, E. D. (1999). Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Molecular Breeding, 5, 131–141. doi: 10.1023/A:1009619924620
  • Christou, P., & Twyman, R. M. (2004). The potential of genetically enhanced plants to address food insecurity. Nutrition Research Reviews, 17, 23–42. doi: 10.1079/NRR200373
  • Dunphy, G. B., & Webster, J. M. (1988). Lipopolysaccharides of Xenorhabdus nematophilus (Enterobacteriaceae) and their haemocyte toxicity in non-immune Galleria mellonella (Insecta: Lepidoptera) larvae. Journal of General Microbiology, 134, 1017–1028.
  • Ferré, J., Real, M. D., Van Rie, J., Jansens, S., & Peferoen, M. (1991). Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proceedings of the National Academy of Sciences, 88, 5119–5123. doi: 10.1073/pnas.88.12.5119
  • Ffrench-Constant, R. H., Dowling, A., & Waterfield, N. R. (2007). Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon, 49, 436–451. doi: 10.1016/j.toxicon.2006.11.019
  • Gatsogiannis, C., Lang, A. E., Meusch, D., Pfaumann, V., Oliver, H., Benz, R., … Raunser, S. (2013). A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature, 495, 520–523. doi: 10.1038/nature11987
  • Gould, F., Anderson, A., Reynolds, A., Bumgarner, L., & Moar, W. (1995). Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. Journal of Economic Entomology, 88, 1545–1559. doi: 10.1093/jee/88.6.1545
  • Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R., & Cygler, M. (1995). Bacillus thuringiensis CryIA(a) insecticidal toxin: Crystal structure and channel formation. Journal of Molecular biology, 254, 447–464. doi: 10.1006/jmbi.1995.0630
  • Joshi, M. C., Sharma, A., Kant, S., Birah, A., Gupta, G. P., Khan, S. R., … Banerjee, N. (2008). An insecticidal GroEL protein with chitin binding activity from Xenorhabdus nematophila. Journal of Biological Chemistry, 283, 28287–28296. doi: 10.1074/jbc.M804416200
  • Jung, S. C., & Kim, Y. G. (2006). Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biological Control, 39, 201–209. doi: 10.1016/j.biocontrol.2006.07.002
  • Jung, S. C., & Kim, Y. G. (2007). Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 100, 246–250. doi: 10.1603/0022-0493(2007)100[246:PEOBTS]2.0.CO;2
  • Khandelwal, P., Choudhury, D., Birah, A., Reddy, M. K., Gupta, G. P., & Banerjee, N. (2004). Insecticidal Pilin subunit from the insect pathogen Xenorhabdus nematophila. Journal of Bacteriology, 186, 6465–6476. doi: 10.1128/JB.186.19.6465-6476.2004
  • Kumari, P., Kant, S., Zaman, S., Mahapatro, G. K., Banerjee, N., & Sarin, N. B. (2014). A novel insecticidal GroEL protein from Xenorhabdus nematophila confers insect resistance in tobacco. Transgenic Research, 23, 99–107. doi: 10.1007/s11248-013-9734-3
  • Liu, D., Burton, S., Glancy, T., Li, Z. S., Hampton, R., Meade, T., & Merlo, D. J. (2003). Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nature Biotechnology, 21, 1222–1228. doi: 10.1038/nbt866
  • Liu, Y.-B., Tabashnik, B. E., Meyer, S. K., & Crickmore, N. (2001). Cross-resistance and stability of resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth. Applied and Environmental Microbiology, 67, 3216–3219. doi: 10.1128/AEM.67.7.3216-3219.2001
  • Lorence, A., Darszon, A., Diaz, C., Lievano, A., Quintero, R., & Bravo, A. (1995). Delta-endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers. FEBS Letters, 360, 217–222. doi: 10.1016/0014-5793(95)00092-N
  • McGaughey, W. H., & Beeman, R. W. (1988). Resistance to Bacillus thuringiensis in colonies of indianmeal moth and almond moth (Lepidoptera: Pyralidae). Journal of Economic Entomology, 81, 28–33. doi: 10.1093/jee/81.1.28
  • Meusch, D., Gatsogiannis, C., Efremov, R. G., Lang, A. E., Hofnagel, O., Vetter, I. R., … Raunser, S. (2014). Mechanism of Tc toxin action revealed in molecular detail. Nature, 508, 61–65. doi: 10.1038/nature13015
  • Morgan, J. A., Sergeant, M., Ellis, D., Ousley, M., & Jarrett, P. (2001). Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Applied and Environmental Microbiology, 67, 2062–2069. doi: 10.1128/AEM.67.5.2062-2069.2001
  • Mwamburi, L. A., Laing, M. D., & Miller, R. (2009). Interaction between Beauveria bassiana and Bacillus thuringiensis var. israelensis for the control of house fly larvae and adults in poultry houses. Poultry Science, 88, 2307–2314. doi: 10.3382/ps.2009-00212
  • Navon, A., Keren, S., Salame, L., & Glazer, I. (1998). An edible-to-insects calcium alginate gel as a carrier for entomopathogenic nematodes. Biocontrol Science and Technology, 8, 429–437. doi: 10.1080/09583159830225
  • Nielsen-LeRoux, C., Gaudriault, S., Ramarao, N., Lereclus, D., & Givaudan, A. (2012). How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Current Opinion in Microbiology, 15, 220–231. doi: 10.1016/j.mib.2012.04.006
  • Pu, X., Yang, Y., Wu, S., & Wu, Y. (2010). Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. Pest Management Science, 66, 371–378.
  • Robertson, J. L., Russell, R. M., Preisler, H. K., & Savin, N. E. (2007). Bioassays with arthropods. Boca Raton, FL: CRC Press.
  • Sayyed, A. H., Raymond, B., Ibiza-Palacios, M. S., Escriche, B., & Wright, D. (2004). Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Applied and Environmental Microbiology, 70, 7010–7017. doi: 10.1128/AEM.70.12.7010-7017.2004
  • Sayyed, A. H., & Wright, D. J. (2006). Genetics and evidence for an esterase-associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera: Plutellidae). Pest Management Science, 62, 1045–1051. doi: 10.1002/ps.1270
  • Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., … Dean, D. H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62, 775–806.
  • Sharma, H. C., Sharma, K. K., & Crouch, J. H. (2004). Genetic transformation of crops for insect resistance: Potential and limitations. Critical Reviews in Plant Sciences, 23, 47–72. doi: 10.1080/07352680490273400
  • Sneh, B., Schuster, S., & Gross, S. (1983). Improvement of the insecticidal activity of Bacillus thuringiensis var. entomocidus on larvae of Spodoptera littoralis (Lepidoptera, Noctuidae) by addition of chitinolytic bacteria, a phagostimulant and a UV-protectant. Zeitschrift für Angewandte Entomologie, 96, 77–83. doi: 10.1111/j.1439-0418.1983.tb03644.x
  • Tabashnik, B. E., Cushing, N. L., Finson, N., & Johnson, M. W. (1990). Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 83, 1671–1676. doi: 10.1093/jee/83.5.1671
  • Tabashnik, B. E., Gassmann, A. J., Crowder, D. W., & Carriere, Y. (2008). Insect resistance to Bt crops: Evidence versus theory. Nature Biotechnology, 26, 199–202. doi: 10.1038/nbt1382
  • Tang, J. D., Shelton, A. M., Van Rie, J., De Roeck, S., Moar, W. J., Roush, R. T., & Peferoen, M. (1996). Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella). Applied and Environmental Microbiology, 62, 564–569.
  • Wang, Q. Y., Nangong, Z. Y., Yang, J., Song, P., Wang, Y., Cui, L. W., & Cui, L. (2012). Toxic activity of a protein complex purified from Xenorhabdus nematophila HB310 to Plutella xylostella larvae. Insect Science, 19, 329–336. doi: 10.1111/j.1744-7917.2011.01472.x
  • Waterfield, N. R., Bowen, D. J., Fetherston, J. D., Perry, R. D., & ffrench-Constant, R. H. F. (2001). The tc genes of Photorhabdus: A growing family. Trends in Microbiology, 9, 185–191. doi: 10.1016/S0966-842X(01)01978-3
  • Zhao, J. Z., Collins, H. L., Li, Y. X., Mau, R. F., Thompson, G. D., Hertlein, M., … Shelton, A. M. (2006). Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate. Journal of Economic Entomology, 99, 176–181. doi: 10.1093/jee/99.1.176

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.