188
Views
5
CrossRef citations to date
0
Altmetric
Short Communications

Potential predation of the exotic Amblyseius swirskii on Euseius concordis (Acari: Phytoseiidae), a predatory mite commonly found in Brazil

, &
Pages 288-293 | Received 21 May 2016, Accepted 08 Dec 2016, Published online: 03 Feb 2017

References

  • Abad-Moyano, R., Urbaneja, A., Hoffmann, D., & Schausberger, P. (2010). Effects of Euseius stipulatus on establishment and efficacy in spider mite suppression of Neoseiulus californicus and Phytoseiulus persimilis in Clementine. Experimental and Applied Acarology, 50, 329–341. doi:10.1007/s10493-009-9320-9
  • Abad-Moyano, R., Urbaneja, A., & Schausberger, P. (2010). Intraguild interactions between Euseius stipulatus and the candidate biocontrol agents of Tetranychus urticae in Spanish clementine orchards: Phytoseiulus persimilis and Neoseiulus californicus. Experimental and Applied Acarology, 50, 23–34. doi:10.1007/s10493-009-9278-7
  • Buitenhuis, R., Shipp, L., & Scott-Dupree, C. (2010). Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Bulletin of Entomological Research, 100(2), 167–173. doi:10.1017/S0007485309006944
  • Calvo, J. F., Knapp, M., Houten, Y. M., van Hoogerbrugge, H., & Belda, J. E. (2015). Amblyseius swirskii: What made this predatory mite such a successful biocontrol agent? Experimental and Applied Acarology, 65, 419–433. doi:10.1007/s10493-014-9873-0
  • Cavalcante, A. C. C., Borges, L. R., Lourenção, A. L., & de Moraes, G. J. (2015). Potential of two populations of Amblyseius swirskii (Acari: Phytoseiidae) for the control of Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) in Brazil. Experimental and Applied Acarology, 67(4), 523–533. doi:10.1007/s10493-015-9964-6
  • Demite, P. R., Moraes, G. J., de McMurtry, J. A., Denmark, H. A., & de Castilho, R. C. (2016). Phytoseiidae Database. [WWW document]. Retrieved May, 2016, from http:www.lea.esalq.usp.br/phytoseiidae
  • Ferreira, J. A. M., Cunha, D. F. S., Pallini, A., Sabelis, M. W., & Jassen, A. J. (2011). Leaf domatia reduce intraguild predation among predatory mites. Ecological Entomology, 36, 435–441. doi:10.1111/j.1365-2311.2011.01286-x
  • Goleva, I., & Zebitz, C. P. W. (2013). Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Experimental and Applied Acarology, 61, 259–283. doi:10.1007/s10493-013-9700-z
  • van Lenteren, J. C., Babendreier, D., Bigler, F., Burgio, G., Hokkanen, H. M. T., Kuske, S., … Zeng, Q.-Q. (2003). Environmental risk assessment of exotic natural enemies used in inundative biological control. BioControl, 48(1), 3–38. doi:10.1023/A:1021262931608
  • van Lenteren, J. C., Bale, J., Bigler, F., Hokkanen, H. M. T., & Loomans, A. J. M. (2006). Assessing risks of releasing exotic biological control agents of arthropod pests. Annual Review Entomology, 51, 609–634. doi:10.1146/annurev.ento.51.110104.151129
  • Lourenção, A. L., Sakate, R. K., & Valle, G. E. (2015). Mosca-branca, Bemisia tabaci (Gennadius) biótipo B. In E. Vilella & R. A. Zucchi (Eds.), Pragas introduzidas no Brasil: insetos e ácaros (pp. 664–689). Piracicaba: FEALQ.
  • McMurtry, J. A., de Moraes, G. J., & Famah Sourassou, N. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18(4), 297–320. doi:10.1590/S1519-566X2008000300013
  • McMurtry, J. A., & Scriven, G. T. (1965). Insectary production of phytoseiid mites. Journal of Economic Entomology, 58(2), 282–284. doi:10.1093/jee/58.2.282
  • Nomikou, M., Janssen, A., Schraag, R., & Sabelis, M. W. (2001). Phytoseiid predators as potential biological control agents for Bemisia tabaci. Experimental and Applied Acarology, 25, 271–291. doi:10.1023/A:1017976725685
  • Prado, J., Witte, A. R., Frank, S., & Sadof, C. S. (2015). Do leaf domatia mediate intraguild predation and host plant resistance to Oligonychus aceris (Shimer) on Red Sunset Maple (Acer rubrum)? Biological Control, 90, 187–192. doi:10.1016/j.biocontrol.2015.06.012
  • Rasmy, A. H., Abou-El-Ella, G. M., & Hussein, H. E. (2004). Cannibalism and interspecific predation of the phytoseiid mite, Amblyseius swirskii. Journal of Pest Science, 77, 23–25. doi:10.1007/s10340-003-0022-5
  • Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J., & Jaffee, B. A. (1995). Intraguild predation among biological-control agents: Theory and evidence. Biological Control, 5(3), 303–335. doi:10.1006/bcon.1995.1038
  • Sabelis, M. W. (1990). How to analyze prey preference when density varies – A new method to discriminate between effects of gut fullness and prey type composition. Oencologia, 82, 289–298. doi:10.1007/BF00317473
  • SAS Institute. (2005). PROC user’s manual version 9.2 Inc. [Computer software]. Cary, NC: SAS Institute.
  • Sato, Y., & Mochizuki, A. (2011). Risk assessment of non-target effects caused by releasing two exotic phytoseiid mites in Japan: Can an indigenous phytoseiid mite become IG prey? Experimental and Applied Acarology, 54(4), 319–329. doi:10.1007/s10493-011-9455-3
  • Schausberger, P. (2003). Cannibalism among phytoseiid mites: A review. Experimental and Applied Acarology, 29(3–4), 173–191. doi:10.1023/A:1025839206394
  • Schausberger, P., & Croft, B. A. (2000). Cannibalism and intraguild predation among phytoseiid mites: Are aggressiveness and prey preference related to diet specialization? Experimental and Applied Acarology, 24(9), 709–725. doi:10.1023/A:1010747208519
  • Walter, D. E., & Proctor, H. C. (2013). Mites: Ecology, evolution & behaviour. Sydney: UNSW Press.
  • Walzer, A., & Schausberger, P. (2011). Threat-sensitive anti-intraguild predation behaviour: Maternal strategies to reduce offspring predation risk in mites. Animal Behaviour, 81, 177–184. doi:10.1016/j.anbehav.2010.09.031
  • Zannou, I. D., Hanna, R., de Moraes, G. J., & Kreiter, S. (2005). Cannibalism and interspecific predation in a phytoseiid predator guild from cassava fields in Africa. Evidence from the laboratory. Experimental and Applied Acarology, 37, 27–42. doi:10.1007/s10493-005-1019-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.