187
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Nucleopolyhedrovirus infection enhances plant defences by increasing plant volatile diversity

, , , , , & show all
Pages 1292-1307 | Received 27 Jun 2017, Accepted 12 Oct 2017, Published online: 24 Oct 2017

References

  • Abel, C., Clauss, M., Schaub, A., Gershenzon, J., & Tholl, D. (2009). Floral and insect-induced volatile formation in Arabidopsis lyrata ssp petraea, a perennial, outcrossing relative of A. thaliana. Planta, 230, 1–11. doi: 10.1007/s00425-009-0921-7
  • Alborn, H. T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., & Tumlinson, J. H. (1997). An elicitor of plant volatiles identified from beet armyworm oral secretion. Science, 276, 945–949. doi: 10.1126/science.276.5314.945
  • An, R., Orellana, D., Phelan, L. P., Cañas, L., & Grewal, P. S. (2015). Entomopathogenic nematodes induce systemic resistance in tomato against Spodoptera exigua, Bemisia tabaci, and Pseudomonas syringae. Biological Control, 93, 24–29. doi: 10.1016/j.biocontrol.2015.11.001
  • Biedma, M. E., Salvador, R., Ferrelli, M. L., Siocco-Cap, A., & Romanowski, V. (2015). Effect of the interaction between Anticarsia gemmatalis multiple nucleopolyhedrovirus and Epinotia aporema granulovirus, on A. gemmatalis (Lepidoptera: Noctuidae) larvae. Biological Control, 91, 17–21. doi: 10.1016/j.biocontrol.2015.07.006
  • Biere, A., & Bennett, A. E. (2013). Three-way interactions between plants, microbes and insects. Functional Ecology, 27, 567–573. doi: 10.1111/1365-2435.12100
  • Cai, X. M., Sun, X. L., Dong, W. X., Wang, G. C., & Chen, Z. M. (2014). Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology, 24, 1–14. doi: 10.1007/s00049-013-0141-2
  • Copolovici, L., Kännaste, A., Remmel, T., & Niinemetsa, Ü. (2014). Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environmental and Experimental Botany, 100, 55–63. doi: 10.1016/j.envexpbot.2013.12.011
  • Cory, J. S., & Hoover, K. (2006). Plant-mediated effects in insect–pathogen interactions. Trends in Ecology and Evolution, 21, 278–286. doi: 10.1016/j.tree.2006.02.005
  • Cory, J. S., & Myers, J. H. (2004). Adaptation in an insect host–plant pathogen interaction. Ecology Letters, 7, 632–639. doi: 10.1111/j.1461-0248.2004.00617.x
  • Danner, H., Boeckler, G. A., Irmisch, S., Yuan, J. S., Chen, F., Gershenzon, J., … Köllner, T. G. (2011). Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa. Phytochemistry, 72, 897–908. doi: 10.1016/j.phytochem.2011.03.014
  • de Moraes, C. M., Mescher, M. C., & Tumlinson, J. H. (2001). Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature, 410, 577–580. doi: 10.1038/35069058
  • Edgar, G. J. (1983). The ecology of south-east Tasmanian phytal animal communities. III. Patterns of species diversity. Journal of Experimental Marine Biology and Ecology, 70, 181–203. doi: 10.1016/0022-0981(83)90129-6
  • Eichenseer, H., Mathews, M. C., Bi, J. L., Murphy, J. B., & Felton, G. W. (1999). Salivary glucose oxidase: Multifunctional roles for Helicoverpa zea? Archives of Insect Biochemistry and Physiology, 42, 99–109. doi: 10.1002/(SICI)1520-6327(199909)42:1<99::AID-ARCH10>3.0.CO;2-B
  • Gassmann, A. J., Stock, S. P., Tabashnik, B. E., & Singer, M. S. (2010). Tritrophic effects of host plants on an herbivore-pathogen interaction. Annals of the Entomological Society of America, 103, 371–378. doi: 10.1603/AN09130
  • Gil, M., Bottini, R., Berli, F., Pontin, M., Silva, M. F., & Piccoli, P. (2013). Volatile organic compounds characterized from grapevine (Vitis vinifera L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation. Phytochemistry, 96, 148–157. doi: 10.1016/j.phytochem.2013.08.011
  • Halitschke, R., Schittko, U., Pohnert, G., Boland, W., & Baldwin, I. T. (2005). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore specific plant responses. Plant Physiology, 125, 711–717. doi: 10.1104/pp.125.2.711
  • Henke, C., Kunert, M., Veit, D., Kunert, G., Krause, K., Kothe, E., & Boland, W. (2015). Analysis of volatiles from Picea abies triggered by below-ground interactions. Environmental and Experimental Botany, 110, 56–61. doi: 10.1016/j.envexpbot.2014.09.009
  • Hoballah, M. E., & Turlings, T. C. J. (2005). The role of fresh versus, old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. Journal of Chemical Ecology, 31, 2003–2018. doi: 10.1007/s10886-005-6074-7
  • Hoover, K., Washburn, J. O., & Volkman, L. E. (2000). Midgut-based resistance of Heliothis virescens to baculovirus infection mediated by phytochemicals in cotton. Journal of Insect Physiology, 46, 999–1007. doi: 10.1016/S0022-1910(99)00211-5
  • Igor, J., Zvonimir, M., Janja, K., & Mirko, G. (2009). Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples. Molecules, 14, 2717–2728. doi: 10.3390/molecules14082717
  • Jiang, J. X., Ji, X. Y., Bao, Y. B., & Wan, N. F. (2014). The effect of oviposition experience of adult Microplitis pallidipes parasitoids on discrimination between nucleopolyhedrovirus-infected and healthy Spodoptera litura larvae. Journal of Pest Science, 87, 143–153. doi: 10.1007/s10340-013-0523-9
  • Jiang, J. X., Ji, X. Y., Yin, Y. Y., & Wan, N. F. (2013). The effect of nucleopolyhedrovirus infection and/or parasitism by Microplitis pallidipes on hemolymph proteins, sugars, and lipids in Spodoptera exigua larvae. BioControl, 58, 777–788. doi: 10.1007/s10526-013-9538-7
  • Jiang, J. X., Zeng, A. P., Ji, X. Y., Wan, N. F., & Chen, X. Q. (2011). Combined effect of nucleopolyhedrovirus and Microplitis pallidipes for the control of the beet armyworm, Spodoptera exigua. Pest Management Science, 67, 705–713. doi: 10.1002/ps.2111
  • Jing, X., Grebenok, R. J., & Behmer, S. T. (2012). Plant sterols and host plant suitability for generalist and specialist caterpillars. Journal of Insect Physiology, 58, 235–244. doi: 10.1016/j.jinsphys.2011.11.013
  • Leinster, T., & Cobbold, C. A. (2012). Measuring diversity: The importance of species similarity. Ecology, 93, 477–489. doi: 10.1890/10-2402.1
  • Lindroth, R. L., Hwang, S. Y., & Osier, T. L. (1999). Phytochemical variation in quaking aspen: Effects on gypsy moth susceptibility to nuclear polyhedrosis virus. Journal of Chemical Ecology, 25, 1331–1341. doi: 10.1023/A:1020926809508
  • Liu, C. T., Zhang, M., Yan, P., Liu, H. C., Liu, X. Y., & Zhan, R. T. (2016). Qualitative and quantitative analysis of volatile components of Zhengtian pills using gas chromatography mass spectrometry and ultra-high performance liquid chromatography. Journal of Analytical Methods in Chemistry, 5, 1–8.
  • Llorens-Molina, J. A., García-Rellán, D., Vacas, S., & Bonet, A. (2015). Individual sampling approach to study the chemodiversity of volatile and semivolatile compounds of Mentha longifolia L. growing wild in Jiloca basin (Spain). International Journal of Biosciences, 7, 166–176.
  • Llusia, J., Bermejo-Bermejo, V., Calvete-Sogo, H., & Peñuelas, J. (2014). Decreased rates of terpene emissions in Ornithopus compressus L. and Trifolium striatum L. by ozone exposure and nitrogen fertilization. Environmental Pollution, 194, 69–77. doi: 10.1016/j.envpol.2014.06.038
  • Maeda, T., Takabayashi, J., Yano, S., & Takafuji, A. (2000). Effects of light on the tritrophic interaction between kidney bean plants, two-spotted spider mites and predatory mites, Amblyseius womersleyi (Acari: Phytoseiidae). Experimental and Applied Acarology, 24, 415–425. doi: 10.1023/A:1006449108245
  • Mattiacci, I., Dicke, M., & Posthumus, M. A. (1995). Beta glucosidase: An elicitor of herbivore induced plant odor that attracts host searching parasitic wasps. Proceedings of the National Academy of Sciences of the United States of America, 92, 2036–2040. doi: 10.1073/pnas.92.6.2036
  • McCormick, A. C., Boeckler, G. A., Kollner, T. G., Gershenzon, J., & Unsicker, S. B. (2014). The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies. BMC Plant Biology, 14, 304–316. doi: 10.1186/s12870-014-0304-5
  • Messmer, V., Jones, G. P., Munday, P. L., Holbrook, S. J., Schmitt, R. J., & Brooks, A. J. (2011). Habitat biodiversity as a determinant of fish community structure on coral reefs. Ecology, 92, 2285–2298. doi: 10.1890/11-0037.1
  • Montagna, M., Lozzia, C. G., Giorgi, A., & Baumgärtner, J. (2012). Insect community structure and insect biodiversity conservation in an alpine wetland subjected to an intermediate diversified management regime. Ecological Engineering, 47, 242–246. doi: 10.1016/j.ecoleng.2012.06.025
  • Moreau, G., Lucarotti, C. J., Kettela, E. G., Thurston, G. S., Holmes, S., Weaver, C., … Morin, B. (2005). Aerial application of nucleopolyhedrovirus induces decline in increasing and peaking populations of Neodiprion abietis. Biological Control, 33, 65–73. doi: 10.1016/j.biocontrol.2005.01.008
  • Newmark, W. D., & Stanley, T. R. (2011). Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 108, 11488–11493. doi: 10.1073/pnas.1104955108
  • Plymale, R., Grove, M. J., Cox-Foster, D., Ostiguy, N., & Hoover, K. (2008). Plant-mediated alteration of the peritrophic matrix and baculovirus infection in lepidopteran larvae. Journal of Insect Physiology, 54, 737–749. doi: 10.1016/j.jinsphys.2008.02.005
  • Poelman, E. H., Bruinsma, M., Zhu, F., Weldegergis, B. T., Boursault, A. E., Jongema, Y., … Dicke, M. (2012). Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host. PLoS Biology, 10, e1001435. doi: 10.1371/journal.pbio.1001435
  • Pohnert, G., Jung, V., Haukioja, E., Lempa, K., & Boland, W. (1999). New fatty acid amides from regurgitant of lepidopteran (Noctuidae: Geometridae) caterpillars. Tetrahedron Letters, 55, 11275–11280. doi: 10.1016/S0040-4020(99)00639-0
  • Poldini, L., Sburlino, G., Buffa, G., & Vidali, M. (2011). Correlations among biodiversity, biomass and other plant community parameters using the phytosociological approach: A case study from the south-eastern Alps. Plant Biosystems, 145, 131–140. doi: 10.1080/11263504.2010.547673
  • Ponzio, C., Gols, R., Weldegergis, B. T., & Dicke, M. (2014). Caterpillar-induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or non-host insect herbivore. Plant, Cell & Environment, 37, 1924–1935. doi: 10.1111/pce.12301
  • Raymond, B., Vanbergen, A., Pearce, I., Hartley, S., Cory, J., & Hails, R. (2002). Host plant species can influence the fitness of herbivore pathogens: The winter moth and its nucleopolyhedrovirus. Oecologia, 131, 554–556. doi: 10.1007/s00442-002-0926-4
  • Rostás, M., Ton, J., Mauchmani, B., & Turlings, T. C. (2006). Fungal infection reduces herbivore-induced plant volatiles of maize but does not affect naive parasitoids. Journal of Chemical Ecology, 32, 1897–1909. doi: 10.1007/s10886-006-9147-3
  • Saeed, S., Sayyed, A. H., & Ahmad, I. (2010). Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Pest Science, 83, 165–172. doi: 10.1007/s10340-009-0283-8
  • Schäfer, M., Meza-Canales, I. D., Brütting, C., Baldwin, I. T., & Meldau, S. (2015). Cytokinin concentrations and chase-domain containing his kinase 2 (nachk2)- and nachk3-mediated perception modulate herbivory-induced defense signaling and defenses in Nicotiana attenuata. New Phytologist, 207, 645–658. doi: 10.1111/nph.13404
  • Shikano, I., Ericsson, J. D., Cory, J. S., & Myers, J. H. (2010). Indirect plant-mediated effects on insect immunity and disease resistance in a tritrophic system. Basic and Applied Ecology, 11, 15–22. doi: 10.1016/j.baae.2009.06.008
  • Sobhy, I. S., Erb, M., Sarhan, A. A., El-Husseini, M. M., Mandour, N. S., & Turlings, T. C. J. (2012). Less is more: Treatment with BTH and laminarin reduces herbivore-induced volatile emissions in maize but increases parasitoid attraction. Journal of Chemical Ecology, 38, 348–360. doi: 10.1007/s10886-012-0098-6
  • Takabayashi, J., & Dicke, M. (1992). Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomologia Experimentalis et Applicata, 64, 187–193. doi: 10.1111/j.1570-7458.1992.tb01608.x
  • Takabayashi, J., Dicke, M., & Posthumus, M. A. (1994). Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. Journal of Chemical Ecology, 20, 1329–1354. doi: 10.1007/BF02059811
  • Takatsuka, J., & Kunimi, V. (2002). Lethal effects of Spodoptera exigua nucleopolyhedrovirus isolated in Shiga Prefecture, Japan, on larvae of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Applied Entomology and Zoology, 37, 93–101. doi: 10.1303/aez.2002.93
  • Toome, M., Randjärv, P., Copolovici, L., Ülo, N., Heinsoo, K., Luik, A., & Noe, S. M. (2010). Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta, 232, 235–243. doi: 10.1007/s00425-010-1169-y
  • Uefune, M., Kugimiya, S., Sano, K., & Takabayashi, J. (2012). Herbivore-induced plant volatiles enhance the ability of parasitic wasps to find hosts on a plant. Journal of Applied Entomology, 136, 133–138. doi: 10.1111/j.1439-0418.2011.01621.x
  • Utpala, P., Asish, G. R., Saji, K. V., George, J. K., Leela, N. K., & Mathew, P. A. (2014). Diversity study of leaf volatile oil constituent of Piper species based on GC/MS and spatial distribution. Journal of Spices and Aromatic Crops, 23, 10–16.
  • Velho, N., Srinivasan, U., Singh, P., & Laurance, W. F. (2015). Large mammal use of protected and community-managed lands in a biodiversity hotspot. Animal Conservation, 32, 345–346.
  • Wan, N. F., Ji, X. Y., Yin, Y. Y., & Jiang, J. X. (2015a). The impact of co-infection by a nucleopolyhedrovirus and the endoparasitoid Microplitis pallidipes on the total hemocyte count and composition in larval beet armyworm, Spodoptera exigua. Biocontrol Science and Technology, 25, 1254–1268. doi: 10.1080/09583157.2015.1050353
  • Wan, N. F., Ji, X. Y., Zhang, H., Yang, J. H., & Jiang, J. X. (2015b). Nucleopolyhedrovirus infection and/or parasitism by Microplitis pallidipes Szepligeti affect hemocyte apoptosis of Spodoptera exigua (Hübner) larvae. Journal of Invertebrate Pathology, 132, 165–170. doi: 10.1016/j.jip.2015.10.004
  • Wan, N. F., Jiang, J. X., & Li, B. (2016). Effect of host plants on the infectivity of nucleopolyhedrovirus to Spodoptera exigua larvae. Journal of Applied Entomology, 140, 636–644. doi: 10.1111/jen.12298
  • Weinbruch, S., Worringen, A., Ebert, M., Scheuvens, D., Kandler, K., Pfeffer, U., & Bruckmann, P. (2014). A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy. Atmospheric Environment, 99, 175–182. doi: 10.1016/j.atmosenv.2014.09.075
  • Williams, L., Rodriguez-Saona, C., Pare, P. W., & Crafts-Brandner, S. J. (2005). The piercing-sucking herbivores Lygus hesperus and Nezara viridula induce volatile emissions in plants. Archives of Insect Biochemistry and Physiology, 58, 84–96. doi: 10.1002/arch.20035
  • Wu, C. Y., Chen, Y. W., Lin, C. C., Hsu, C. L., Wang, C. H., & Lo, C. F. (2012). A new cell line (NTU-SE) from pupal tissues of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), is highly susceptible to S. exigua multiple nucleopolyhedrovirus (SeMNPV) and Autographa californica MNPV (AcMNPV). Journal of Invertebrate Pathology, 111, 143–151. doi: 10.1016/j.jip.2012.07.022
  • Zhang, P. J., Broekgaarden, C., Zheng, S. J., Snoeren, T. A. L., van Loon, J. J. A., Gols, R., & Dicke, M. (2013). Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytologist, 197, 1291–1299. doi: 10.1111/nph.12106
  • Zhao, J., Chen, X., Bao, L., Bao, Z., He, Y., Zhang, Y., & Li, J. (2016). Correlation between microbial diversity and toxicity of sludge treating synthetic wastewater containing 4-chlorophenol in sequencing batch reactors. Chemosphere, 153, 138–145. doi: 10.1016/j.chemosphere.2016.01.086

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.