326
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Production of Trichoderma micropropagules as a biocontrol agent in static liquid culture conditions by using an integrated bioreactor system

& ORCID Icon
Pages 1197-1214 | Received 20 Nov 2018, Accepted 21 Sep 2019, Published online: 30 Sep 2019

References

  • Abbasi, H., & Fazaelipoor, M. H. (2010). Continuous production of Polygalacturonases (PGases) using Aspergillus Niger in a surface culture bioreactor and Modeling the process. Biotechnology and Bioprocess Engineering, 15, 308–313. doi: 10.1007/s12257-009-0096-x
  • Ang, T. N., Ngoh, G. C., & Chua, A. S. M. (2013). Development of a novel inoculum preparation method for solid-state fermentation—cellophane film culture (CFC) technique (short communication). Industrial Crops and Products, 43, 774–777. doi: 10.1016/j.indcrop.2012.08.022
  • Anike, F. N., Isikhuemhen, O. S., Blum, D., & Neda, H. (2015). Nutrient Requirements and fermentation conditions for mycelia and Crude Exo-Polysaccharides production by Lentinus squarrosulus. Advances in Bioscience and Biotechnology, 6, 526–536. doi: 10.4236/abb.2015.68055
  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., Beltrán-Peña, E., Herrera-Estrella, A., & López-Bucio, J. (2011). Trichoderma-induced plant immunity likely involves both hormonal- and camalex independent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungus Botrytis cinerea. Plant Signaling & Behavior, 6(10), 1554–1563. doi: 10.4161/psb.6.10.17443
  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C., & López-Bucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxindependent mechanism in Arabidopsis. Plant Physiology, 149, 1579–1592. PMID:19176721; doi:10.1104/pp.108.130369.
  • Coskuntuna, A., & Ozer, N. (2008). Biological control of onion basal rot disease using Trichoderma harzianum and induction of antifungal compounds in onion set following seed treatment. Crop Protection, 27, 330–336. doi: 10.1016/j.cropro.2007.06.002
  • Darouneh, E., Alavi, A., Vosoughi, M., Arjmand, M., Seifkordi, A., & Rajabi, R. (2009). Citric acid production: Surface culture versus submerged culture. African Journal of Microbiology Research, 3(9), 541–545.
  • Daryaei, A., Jones, E. E., Glare, T. R., & Falloon, R. E. (2016). Ph and water activity in culture media affect biological control activity of Trichoderma atroviride against R.solani. Biological Control, 92, 24–30. doi: 10.1016/j.biocontrol.2015.09.001
  • Djonović, S., Pozo, M. J., Dangott, L. J., Howell, C. R., & Kenerley, C. M. (2006). Sm1, a proteinaceous elicitor by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Molecular Plant-Microbe Interactions, 19, 838–853. PMID:16903350; doi:10.1094/MPMI-19-0838.
  • Djonović, S., Vargas, W. A., Kolomiets, M. V., Horndeski, M., Wiest, A., & Kenerley, C. M. (2007). A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiology, 145, 875–889. PMID:17885089; doi:10.1104/pp.107.103689.
  • Elad, Y. (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19, 709–714. doi: 10.1016/S0261-2194(00)00094-6
  • Garcia-Ochoa, F., Gomez, E., Santos, V. E., & Merchuk, J. C. (2010). Oxygen uptake rate in microbial processes: An overview. Biochemical Engineering Journal, 49, 289–307. doi: 10.1016/j.bej.2010.01.011
  • Glazebrook, M. A., Vining, L. C., & White, R. L. (1992). Growth morphology of Streptomyces akiyoshiensis in submerged culture: Influence of pH, inoculum and nutrients. Canadian Journal of Microbiology, 38, 98–103. doi: 10.1139/m92-016
  • Grzegorczyk, M., Kancelista, A., Łaba, W., Piegza, M., & Witkowska, D. (2018). The effect of lyophilization and storage time on the survival rate and hydrolytic activity of Trichoderma strains. Folia Microbiologica, 63(4), 433–441. doi: 10.1007/s12223-017-0581-0
  • Gupta, V. G., Schmoll, M., Herrera-Estrella, A., Upadhyay, R. S., Druzhinina, I., & Tuohy Newnes, M. (2014). Biotechnology and Biology of Trichoderma. Newnes, 2014, 528–529. doi: 10.1016/C2012-0-00434-6
  • Harman, G. E., Jin, X., Stasz, T. E., Peruzzotti, G., Leopold, A. C., & Taylor, A. G. (1991). Production of Conidial biomass of Trichoderma harzianum for biological control. Biological Control, 1, 23–28. doi: 10.1016/1049-9644(91)90097-J
  • Ikasari, L., & Mitchell, D. A. (1998). Oxygen uptake rate kinetics during solid state fermentation with Rhizopus oligosporus. Biotechnology Techniques, 12(2), 171–175. doi: 10.1023/A:1008805004361
  • Jahromi, F. G., Ash, G. J., & Cothe, E. J. (1998). Influence of cultural and environmental conditions on conidial production, conidial germination and infectivity of Rhynchosporium alismatis, a candidate mycoherbicide. Australasian Plant Pathology, 27, 180–185. doi: 10.1071/AP98020
  • Jin, X., & Custis, D. (2011). Microencapsulating aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures. Biological Control, 56, 202–208. doi: 10.1016/j.biocontrol.2010.11.008
  • Junaid, J. M., Dar, N. A., Bhat, T. A., Bhat, A. H., & Bhat, M. A. (2013). Commercial biocontrol agents and their Mechanism of Action in the Management of plant pathogens. International Journal of Modern Plant & Animal Sciences, 1(2), 39–57.
  • Knudsen, G. R., Eschen, D. J., Dandurand, L. M., & Wang, Z. G. (1991). Method to enhance growth and sporulation of pelletized biocontrol fungi. Applied and Environmental Microbiology, 57, 2864–2286.
  • Kumar, S., Thakur, M., & Rani, A. (2014). Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. African Journal of Agricultural Research, 9(53), 3838–3852. doi:10.5897/AJAR2014. 9061.
  • Lee, B. C., Bae, J. T., Pyo, H. B., Choe, T. B., Kim, S. W., Hwang, H. J., & Yun, J. W. (2004). Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible basidiomycete Grifola frondosa. Enzyme and Microbial Technology, 35, 369–376. doi: 10.1016/j.enzmictec.2003.12.015
  • Lo, C. T., & Lin, C. Y. (2002). Screening strains of Trichoderma spp. For plant growth enhancement in Taiwan. Plant Pathology Bulletin, 11, 215–220.
  • Mitchell, D. A., Berovic, M., & Krieger, N. (2000). biochemical engineering aspects of solid state bioprocessing. In New products and new areas of bioprocess engineering. Advances in biochemical engineering/biotechnology (vol 68, pp. 61–138). Berlin: Springer. doi: 10.1007/3-540-45564-7_3
  • Mohamad, R., Mohamed, M. S., Suhaili, N., Salleh, M. M., & Ariff, A. B. (2010). Kojic acid: Applications and development of fermentation process for production. Biotechnology and Molecular Biology Reviews, 5(2), 24–37.
  • Mujumdar, A. S. (2007). Book review: Handbook of industrial drying. Third Edition, 25(6), 1133–1134. doi: 10.1080/07373930701399224.
  • Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma–plant–pathogen interactions: Advances in genetics of biological control. Indian Journal of Microbiology, 52(4), 522–529. doi: 10.1007/s12088-012-0308-5
  • Noh, A. M., Jahim, J. M., Abdul Murad, A. M., & Bakar, A.F. D.(2012) Effect of Various cultivation Methods on Cellobiohydrolase production from Aspergillus niger. International Journal on Advanced Science Engineering Information Technology, 2(4), 287–290. doi:10.18517/ijaseit.2.4.205.
  • Nol, L., & Henis, Y. (1987). Effect of spore concentration on germination and autotropism in Trichoderma hamatum. Plant and Soil, 100, 285–295. doi:10.1007/978-94-009-3627-0_19 doi: 10.1007/BF02370946
  • Ozbay, N., Emrebaş, N., & Akıncı, S. (2010). Topraksız Ortamda Roka ve Tere Yetistiriciliğinde Mikrobiyal Gübre (Trichoderma harzianum, Kuen 1585) Uygulamasının Bitki Gelisimi ve Verimi Üzerine Etkileri. Journal of Ege University Faculty of Agriculture Special Issue (5. Bitki Besleme ve Gübre Kongresi Bildirileri), P: 268-274. ISSN:1018-8851.
  • Pa’e, N., Zahan, K. A., & Muhamad, I. I. (2011). Production of biopolymer from Acetobacter xylinum using different fermentation Methods. International Journal of Engineering & Technology IJET-IJENS, 11(05), 90–98.
  • Pandey, A., Soccol, C. R., Rodriguez-Leon, J. A., & Nigam, P. (2001). Solid-State fermentation in biotechnology fundamentals and applications (pp. 39–55). New Delhi: Asiatech Publishers. doi: 10.1016/S0960-8524(01)00185-7
  • Petre, M., Peng, M. X., & Mao, L. X. (2004). The Influence of culture conditions on fungal Pellet formation by submerged fermentation of Cordyceps sinensis (Paecilomyces hepialid)-Cs4. International Journal of Medicinal Mushrooms, 6, 99–104.
  • Ramanujam, B., Prasad, R. D., Sriram, S., & Rangeswaran, R. (2010). Mass production, formulation, quality control and delivery of Trichoderma for plant disease management. The Journal of Plant Protection Sciences, 2(2), 1–8.
  • Ranasingh, N., Saurabh, A., & Nedunchezhiyan, M. (2006). Use of Trichoderma in Disease Management. Orissa Review, pp. 68–70.
  • Sargin, S., Eltem, R., & Çoban, I. (2018). TR Patent No. TR 2015-16259 B. Yenimahalle, Ankara: Türk Patent ve Marka Kurumu.
  • Sargin, S., Gezgin, Y., Eltem, R., & Vardar, F. (2013). Micropropagule production from Trichoderma harzianum EGE-K38 using solid-state fermentation and a comparative study for drying methods. Turkish Journal of Biology, 37, 139–146.
  • Shi, J., Chinn, M. S., & Sharma-Shivappa, R. R. (2014). Interactions between fungal growth, substrate utilization, and enzyme production during solid substrate cultivation of Phanerochaete chrysosporium on cotton stalks. Bioprocess and Biosystems Engineering, 37(12), 2463–2473. doi: 10.1007/s00449-014-1224-3
  • Singh, A., Shahid, M., Srivastava, M., Pandey, S., Sharma, A., & Kumar, V. (2014). Optimal physical parameters for growth of Trichoderma species at Varying pH, temperature and agitation. Virology&Mycology, 3, 127. doi:10.4172/2161-0517.1000127.
  • Singh, A., Srivastava, S., & Singh, H. B. (2007). Effect of substrates on growth and shelf life of Trichoderma harzianum and its use in biocontrol of diseases. Bioresource Technology, 98, 470–473. doi: 10.1016/j.biortech.2006.01.002
  • Smits, J. P., Rinzema, A., Tramper, J., van Sonsbeek, H. M., & Knol, W. (1996). Solid-state fermentation of wheat bran by Trichoderma reesei QM9414: Substrate composition changes, C balance, enzyme production, growth and kinetics. Applied Microbiology and Biotechnology, 46, 489–496. doi: 10.1007/s002530050849
  • Witkowska, D., Buska-Pisarek, K., Laba, W., Piegza, M., & Kancelista, A. (2017). Effect of Lyophilization on survivability and growth kinetic of Trichoderma strains preserved on various agriculture by-products. Polish Journal of Microbiology 2017, 66(2), 181–188. doi:10.5604/01.3001.0010.4361.
  • Witkowska, D., Kancelista, A., Wilczak, A., Stempniewicz, R., Pasławska, M., Piegza, M., … Szczech, M. (2016). Survivability and storage stability of Trichoderma atroviride TRS40 preserved by fluidised bed drying on various agriculture by-products. Biocontrol Science and Technology, 26(12), 1591–1604. doi:10.1080/09583157.2016.1201457.
  • Wu, J. Z., Cheung, P. C. K., Wong, K. H., & Huang, N. L. (2003). Studies on submerged fermentation of Pleurotus tuber-regium (Fr.) Singer – part 1: Physical and chemical factors affecting the rate of mycelial growth and bioconversion efficiency. Food Chemistry, 81, 389–393. doi: 10.1016/S0308-8146(02)00457-0
  • Xiao, J. H., Chen, D. X., Wan, W. H., Hu, X. J., Qi, Y., & Liang, Z. Q. (2006). Enhanced simultaneous production of mycelia and intracellular polysaccharide in submerged cultivation of Cordyceps jiangxiensis using desirability functions. Process Biochemistry, 41, 1887–1893. doi: 10.1016/j.procbio.2006.03.031
  • Yedidia, I., Benhamou, N., & Chet, I. (1999). Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology, 65, 1061–1070. PMID:10049864.
  • Zhang, W. X., & Zhong, J. J. (2010). Effect of oxygen concentration in gas phase on sporulation and individual ganoderic acids accumulation in liquid static culture of Ganoderma lucidum. Journal of Bioscience and Bioengineering, 109, 37–40. doi: 10.1016/j.jbiosc.2009.06.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.