100
Views
0
CrossRef citations to date
0
Altmetric
Articles

Studies on gall-inducing behaviour and life cycle to aid host specificity testing of Notomma mutilum (Diptera: Tephritidae) – a prospective biological control agent for prickly acacia (Vachellia nilotica subsp. indica)

ORCID Icon, , &
Pages 1139-1155 | Received 26 Jan 2022, Accepted 12 Jun 2022, Published online: 22 Jun 2022

References

  • Bellutti, N., Gallmetzer, A., Innerebner, G., Schmidt, S., Zelger, R., & Koschier, E. H. (2018). Dietary yeast affects preference and performance in Drosophila suzukii. Journal of Pest Science, 91(2), 651–660. https://doi.org/10.1007/s10340-017-0932-2
  • Bolton, M. P. (1989). Biology and ecology of prickly acacia. Unpublished Report, Richmond Prickly Acacia Field Day, 19 September 1989.
  • Burrows, W., Carter, J., Scanlan, J., & Anderson, E. (1990). Management of savannas for livestock production in north-east Australia: Contrasts across the tree-grass continuum. Journal of Biogeography, 17(4-5), 503–512. https://doi.org/10.2307/2845383
  • Comben, D., McCulloch, G., Dhileepan, K., & Walter, G. (2021). Genetic identity of Australian prickly acacia (Vachellia nilotica, Fabales: Mimosoideae) – Assessing the target for biological control. Biological Control, 155, 104540. https://doi.org/10.1016/j.biocontrol.2021.104540
  • Craig, T., Itami, J., & Price, P. (1989). A strong relationship between oviposition preference and larval performance in a shoot-galling sawfly. Ecology, 70(6), 1691–1699. https://doi.org/10.2307/1938103
  • Craig, T. P., Abrahamson, W. G., Itami, J. K., & Horner, J. D. (1999). Oviposition preference and offspring performance of Eurosta solidaginis on genotypes of Solidago altissima. Oikos, 86(1), 119–128. https://doi.org/10.2307/3546576
  • Dhileepan, K. (2009). Acacia nilotica ssp. Indica (L.) Willd. Ex Del. (mimosaceae). In A. Raman, G. V. P. Reddy, & R. Muniappan (Eds.), Biological control of tropical Weeds using arthropods (pp. 17–37). Cambridge University Press. https://doi.org/10.1017/CBO9780511576348.002.
  • Dhileepan, K., Lockett, C., Robinson, M., & Pukallus, K. (2009). Prioritising potential guilds of specialist herbivores as biological control agents for prickly acacia through simulated herbivory. Annals of Applied Biology, 154(1), 97–105. https://doi.org/10.1111/j.1744-7348.2008.00277.x
  • Dhileepan, K., Lockett, C. J., Balu, A., Murugesan, S., Perovic, D. J., & Taylor, D. B. J. (2015). Life cycle and host range of Phycita sp rejected for biological control of prickly acacia in Australia. Journal of Applied Entomology, 139(10), 800–812. https://doi.org/10.1111/jen.12220
  • Dhileepan, K., Shi, B., Callander, J., Taylor, D., Teshome, M., Neser, S., Diagne, N., & King, A. (2019). Biological control of prickly acacia (Vachellia nilotica subsp. indica): New gall-inducing agents from Africa. In XV International symposium on biological control of weeds, Engelberg, Switzerland.
  • Douglas, A. E. (2009). The microbial dimension in insect nutritional ecology. Functional Ecology, 23(1), 38–47. https://doi.org/10.1111/j.1365-2435.2008.01442.x
  • Dwivedi, A. P. & Indian Council of Forestry, R., & Education (1993). Babul (Acacia nilotica), a multipurpose tree of dry areas. Arid Forest Research Institute.
  • el Harym, Y., & Belqat, B. (2017). First checklist of the fruit flies of Morocco, including new records (Diptera, Tephritidae). ZooKeys, 702, 137–171. https://doi.org/10.3897/zookeys.702.13368
  • Freidberg, A., & Morgulis, E. (2011). A survey of the Tephritoidea (Insecta: Diptera) of Israel. Final Report submitted to ITI on 20 November, 2011. Accessed http://docplayer.net/storage/52/30133475/1616476965/gGptAYKxX6KA9PhnOR5I3Q/30133475.pdf
  • Gripenberg, S., Mayhew, P. J., Parnell, M., & Roslin, T. (2010). A meta-analysis of preference–performance relationships in phytophagous insects. Ecology Letters, 13(3), 383–393. https://doi.org/10.1111/j.1461-0248.2009.01433.x
  • Hancock, D. (1986). Classification of the Trypetinae (Diptera: Tephritidae), with a discussion of the afrotropical fauna. Journal of the Entomological Society of Southern Africa, 49(2), 275–305. https://journals.co.za/doi/10. 10520/AJA00128789_2722
  • Hannan-Jones, M. A. (1999). Variation in leaf phenolics in subspecies of Acacia nilotica (L.) Willd. ex Del. (Mimosaceae). In A.C. Bishop, M. Boersma, & C.D. Barnes (Eds.), 12th Australian weeds conference: Papers and proceedings (pp. 601–604). Tasmanian Weeds Society, Devonport, Tasmania.
  • Head, E. (2008). Ecology of the Fergusonina fly and Fergusobia nematode gall association in South Australia, University of Adelaide. https://hdl.handle.net/2440/48390
  • Hilker, M., & Fatouros, N. E. (2015). Plant responses to insect egg deposition. Annual Review of Entomology, 60(1), 493–515. https://doi.org/10.1146/annurev-ento-010814-020620
  • How, S. T., Abrahamson, W. G., & Craig, T. P. (1993). Role of host plant phenology in host use by Eurosta solidaginis (Diptera: Tephritidae) on solidago (compositae). Environmental Entomology, 22(2), 388–396. https://doi.org/10.1093/ee/22.2.388
  • Kriticos, D., Brown, J., Radford, I., & Nicholas, M. (1999). Plant population ecology and biological control: Acacia nilotica as a case study. Biological Control, 16(2), 230–239. https://doi.org/10.1006/bcon.1999.0746
  • Li, Y., Wang, S., Liu, Y., Lu, Y., Zhou, M., Wang, S., & Wang, S. (2020). The effect of different dietary sugars on the development and fecundity of Harmonia axyridis. Frontiers in Physiology, 11(574851), 1–12. https://doi.org/10.3389/fphys.2020.574851
  • Mackey, A. P. (1997). The biology of Australian weeds. 29. Acacia nilotica ssp indica (Benth.) Brenan. Plant Protection Quarterly, 12(1), 7–17.
  • Mani, M. S. (1964). Ecology of plant galls. Springer.
  • Marini-Filho, O. J., & Fernandes, G. W. (2012). Stem galls drain nutrients and decrease shoot performance in Diplusodon orbicularis (Lythraceae). Arthropod-Plant Interactions, 6(1), 121–128. https://doi.org/10.1007/s11829-011-9147-2
  • Meyer, J., & Maresquelle, H. J. (1983). Anatomie des galles. Gebruder Borntraeger.
  • Miller, D. G. I., & Raman, A. (2019). Host–plant relations of gall-inducing insects. Annals of the Entomological Society of America, 112(1), 1–19. https://doi.org/10.1093/aesa/say034
  • Norrbom, A. L., Carroll, L. E., Thompson, F. C., White, I. M., & Freidberg, A. (1999). Systematic database of names. In F. C. Thompson (Ed.), Fruit fly expert identification system and systematic information database, (Vol. 9, pp. 65–299). Myia.
  • Palmer, W. A., Lockett, C. J., Senaratne, K., & McLennan, A. (2007). The introduction and release of Chiasmia inconspicua and C. assimilis (Lepidoptera : Geometridae) for the biological control of Acacia nilotica in Australia. Biological Control, 41(3), 368–378. https://doi.org/10.1016/j.biocontrol.2007.02.009
  • Pollock, N. A. R. (1926). Acacia arabica as fodder. Queensland Agricultural Journal, 25, 336–337.
  • Poudel, A. S., Shrestha, B., Jha, P. K., Baniya, C. B., & Muniappan, R. (2020). Stem galling of Ageratina adenophora (Asterales: Asteraceae) by a biocontrol agent Procecidochares utilis (Diptera: Tephritidae) is elevation dependent in central Nepal. Biocontrol Science and Technology, 30(7), 611–627. https://doi.org/10.1080/09583157.2020.1749991
  • Price, P. W. (1991). The plant vigor hypothesis and herbivore attack. Oikos, 62(2), 244–251. https://doi.org/10.2307/3545270
  • Radford, I. J., Nicholas, D. M., & Brown, J. R. (2001). Assessment of the biological control impact of seed predators on the invasive shrub Acacia nilotica (Prickly acacia) in Australia. Biological Control, 20(3), 261–268. https://doi.org/10.1006/bcon.2000.0903
  • Raman, A. (1991). Cecidogenesis of leaf galls on Syzygium cumini (L.) Skeels (Myrtaceae) induced by Trioza jambolanae Crawford (Homoptera: Psylloidea). Journal of Natural History, 25(3), 653–663. https://doi.org/10.1080/00222939100770421
  • Raman, A. (1996). Nutritional diversity in gall-inducing insects and their evolutionary relationships with flowering plants. International Journal of Ecology and Environmental Sciences, 22(3), 150–160.
  • Raman, A. (2009). Insect-plant interactions: The gall factor. In J. Seckbach, & Z. Dubinsky (Eds.), All flesh is grass: Plant–animal interrelationships (pp. 119–146). Springer Press.
  • Raman, A. (2011a). Insect-plant interactions: The gall factor. In Z. Dubinsky, & J. Seckbach (Eds.), All flesh is grass: Plant-animal interrelationships (pp. 119–146). Springer. https://doi.org/10.1007/978-90-481-9316-5_5
  • Raman, A. (2011b). Morphogenesis of insect-induced plant galls: Facts and questions. Flora – Morphology, Distribution, Functional Ecology of Plants, 206(6), 517–533. https://doi.org/10.1016/j.flora.2010.08.004
  • Raman, A. (2021). Gall-inducing insects and plants: The induction conundrum. Current Science, 120(1), 66–78. https://doi.org/10.18520/cs/v120/i1/66-78
  • Raman, A., Schafer, C., & Withers, T. (2005). Galls and gall-inducing arthropods: an overview of their biology, ecology, and evolution. Biology, Ecology, and Evolution of Gall-inducing Arthropods, New Hampshire, United Kingdom.
  • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Rohfritsch, O. (2011). Genesis and development of dipterocecidia. Atti Accad. Naz. Ital. Entomol., LVIII(1), 55–66.
  • RStudio Team. (2020). RStudio: Integrated development for R. RStudio, PBC. http://www.rstudio.com/
  • Santos, J. C., Silveira, F. A. O., & Fernandes, G. W. (2008). Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevipes (Fabaceae). Evolutionary Ecology, 22(1), 123–137. https://doi.org/10.1007/s10682-007-9162-z
  • Senaratne, K. A. D. W., Palmer, W. A., & Sutherst, R. W. (2006). Use of CLIMEX modelling to identify prospective areas for exploration to find new biological control agents for prickly acacia. Australian Journal of Entomology, 45(4), 298–302. https://doi.org/10.1111/j.1440-6055.2006.00554.x
  • Sharma, A., Allen, J., Madhavan, S., Raman, A., Taylor, G. S., & Fletcher, M. J. (2016). Complex lipids and sterols in the leaves of eucalyptus macrorhyncha (Myrtaceae) in the context of feeding by an unnamed gall-inducing species of Glycaspis (Synglycaspis) (hemiptera: Psylloidea: Aphalaridae). Annals of the Entomological Society of America, 109(6), 890–898. https://doi.org/10.1093/aesa/saw059
  • Spies, P., & March, N. E. (2004). Prickly acacia national case studies manual: Approaches to the management of prickly acacia (Acacia nilotica subsp. indica) in Australia. Department of Natural Resources, Mines and Energy.
  • Taylor, D. B. J., & Dhileepan, K. (2019). Implications of the changing phylogenetic relationships of Acacia s.l. on the biological control of Vachellia nilotica ssp. indica in Australia. Annals of Applied Biology, 174(2), 238–247. https://doi.org/10.1111/aab.12499
  • Thorp, J., & Lynch, R. (2000). The determination of weeds of national significance. National Weeds Strategy Executive Committee.
  • Wardill, T. J., Glenn, C. G., Myron, Z., William, A. P., Julia, P., & Kirsten, D. S. (2005). The importance of species identity in the biocontrol process: Identifying the subspecies of Acacia nilotica (Leguminosae: Mimosoideae) by genetic distance and the implications for biological control. Journal of Biogeography, 32(12), 2145–2159. https://doi.org/10.1111/j.1365-2699.2005.01348.x
  • Wickham, H. (2009). Ggplot2: Elegant graphics for data analysis. Springer-Verlag.
  • Winston, R. L., Schwarzländer, M., Hinz, H. L., Day, M. D., Cock, M. J. W., & Julien, M. H. (2014). Biological control of weeds: a world catalogue of agents and their target weeds (5th ed.). USDA Forest Service, Forest Health Technology Enterprise Team. FHTET-2014-04.
  • Yukawa, J., & Rohfritsch, O. (2005). Biology and ecology of gall-inducing Cecidomyiidae (Diptera). In A. Raman, C. W. Schaefer, & T. M. Withers (Eds.), Biology, ecology, and evolution of gall-inducing arthropods (pp. 273–304). Science Publishers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.