136
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Efficacy of alginate-based formulation of Steinernema carpocapsae IRMoghan1 against Mythimna loreyi (Lepidoptera: Noctuidae)

Pages 35-47 | Received 28 Jul 2022, Accepted 30 Nov 2022, Published online: 07 Dec 2022

References

  • Abbott, W. S. (1925). A Method of Computing the Effectiveness of an Insecticide. Journal of Economic Entomology, 18(2), 265–267. http://dx.doi.org/10.1093/jee/18.2.265a
  • Adams, B. J., & Nguyen, K. B. (2002). Taxonomy and systematics. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 1–34). CABI Publishing.
  • Caramona, A., Coimbra, I., Pinto, T., Aparício, S., Madeira, P. J. A., Ribeiro, H. M., et al. (2022). Repurposing of marine raw materials in the formulation of innovative plant protection products. Journal of Agricultural and Food Chemistry, 70(14), 4221–4242. https://doi.org/10.1021/acs.jafc.2c00038
  • Chen, Songbi, & Glazer, Itamar. (2005). A novel method for long-term storage of the entomopathogenic nematode Steinernema feltiae at room temperature. Biological Control, 32(1), 104–110. http://dx.doi.org/10.1016/j.biocontrol.2004.08.006
  • Cruz-Martínez, H., Ruiz-Vega, J., Matadamas-Ortíz, P. T., Cortés-Martínez, C. I., & Rosas-Diaz, J. (2017). Formulation of entomopathogenic nematodes for crop pest control—A review. Plant Protection Science, 53, 15–24. https://doi.org/10.17221/35/2016-PPS
  • Ebrahimi, L. (2022). Quantitative and qualitative characteristics of alginate-based formulation of a native isolate of the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). Plant Protection, 45(1), 83–95. (In Persian).
  • Ebrahimi, L., Niknam, G., & Lewis, E. E. (2011). Lethal and sublethal effects of Iranian isolates of Steinernema feltiae and Heterorhabditis bacteriophora on the Colorado potato beetle, Leptinotarsa decemlineata. BioControl, 56(5), 781–788. https://doi.org/10.1007/s10526-011-9343-0
  • Ebrahimi, L., Shiri, M., & Dunphy, G. B. (2018). Effect of entomopathogenic nematode, Steinernema feltiae, on survival and plasma phenoloxidase activity of Helicoverpa armigera (Hb)(Lepidoptera: Noctuidae) in laboratory conditions. Egyptian Journal of Biological Pest Control, 28(1), 1–4. https://doi.org/10.1186/s41938-017-0016-x
  • Ebrahimi, L., Shiri, M. R., & Dunphy, G. B. (2016). Efficacy of the entomopathogenic nematode, Steinernema feltiae against thevegetable leaf miner, Liriomyza sativae blanchard (Diptera: Agromyzidae). Egyptian Journal of Biological Pest Control, 26(3), 583.
  • Ebrahimi, L., TanhaMaafi, Z., & Sharifi, P. (2019). First report of the entomopathogenic nematode, Steinernema carpocapsae, from Moghan region of Iran and its efficacy against the turnip moth, Agrotis segetum Denis and Schiffermuller (Lepidoptera: Noctuidae), larvae. Egyptian Journal of Biological Pest Control, 29(1), 1–6. https://doi.org/10.1186/s41938-019-0168-y
  • Georgis, R., & Kaya, H. K. (1998). Formulation of Entomopathogenic Nematodes. In H. D. Burges (Ed.), Formulation of microbial biopesticides. Springer. https://doi.org/10.1007/978-94-011-4926-6_9
  • Grewal, P. S., Wang, X., & Taylor, R. A. J. (2002). Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: is there a relationship? International Journal for Parasitology, 32(6), 717–725. https://doi.org/10.1016/S0020-7519(02)00029-2
  • Griffin, C. T., Boemare, N. E., Lewis, E. E., et al. (2005). Biology and behaviour. In P. Grewal (Ed.), Nematodes as biocontrol agents (pp. 47–64). CABI Publishing.
  • Gungor, D. S., Keskin, N., & Hazir, S. (2006). Ecological characterization of Steinernema anatoliense (Rhabditida: Steinernematidae). Journal of Invertebrate Pathology, 92(1), 39–44.
  • Hiltpold, I. (2015). Prospects in the application technology and formulation of entomopathogenic nematodes for biological control of insect pests. In R. Campos-Herrera (Ed.), Nematode pathogenesis of insects and other pests. sustainability in plant and crop protection. Springer. https://doi.org/10.1007/978-3-319-18266-7_7
  • Hiltpold, I., Hibbard, B. E., Wade French, B., & Turlings, T. C. J. (2012). Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the Western corn rootworm. Plant and Soil, 358, 11–25. https://doi.org/10.1007/s11104-012-1253-0
  • Jaffuel, G., Sbaiti, I., & Turlings, T. C. (2020). Encapsulated entomopathogenic nematodes can protect maize plants from Diabrotica balteata larvae. Insects, 11(1), 27. https://doi.org/10.3390/insects11010027
  • Jean-Baptiste, M. C., de Brida, A. L., Bernardi, D., da Costa Dias, S., de Bastos Pazini, J., Leite, L. G., Wilcken, S. R., & Garcia, F. R. (2021). Effectiveness of entomopathogenic nematodes against Ceratitis capitata (Diptera: Tephritidae) pupae and nematode compatibility with chemical insecticides. Journal of Economic Entomology, 114(1), 248–256. https://doi.org/10.1093/jee/toaa301
  • Kagimu, N., & Malan, A. P. (2019). Formulation of South African entomopathogenic nematodes using alginate beads and diatomaceous earth. BioControl, 64(4), 413–422. https://doi.org/10.1007/s10526-019-09945-1
  • Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38, 181–206.
  • Kaya, H. K., Mannion, C. M., Burlando, T. M., & Nelsen, C. E. (1987). Escape of Steinernema feltiae from alginate capsules containing tomato seeds. Journal of Nematology, 19, 287–291.
  • Kaya, H. K., & Nelsen, C. E. (1985). Encapsulation of Steinernematid and Heterorhabditid nematodes with calcium alginate: a new approach for insect control and other applications. Environment Entomol, 14(5), 572–574. https://doi.org/10.1093/ee/14.5.572
  • Kaya, H. K., & Stock, S. P. (1997). Techniques in insect nematology. In A. Lacey L (Ed.), Manual of techniques in insect pathology (pp. 281–324). Academic Press.
  • Kim, J., Hiltpold, I., Jaffuel, G., Sbaiti, I., Hibbard, B. E., & Turlings, T. C. (2021). Calcium-alginate beads as a formulation for the application of entomopathogenic nematodes to control rootworms. Journal of Pest Science, 94, 1197–1208. https://doi.org/10.1007/s10340-021-01349-4
  • Kim, J., Jaffuel, G., & Turlings, T. C. (2015). Enhanced alginate capsule properties as a formulation of entomopathogenic nematodes. BioControl, 60(4), 527–535. https://doi.org/10.1007/s10526-014-9638-z
  • Koppenhöfer, A. M., Shapiro-Ilan, D. I., & Hiltpold, I. (2020). Entomopathogenic nematodes in sustainable food production. Frontiers in Sustainable Food Systems, https://doi.org/10.3389/fsufs.2020.00125
  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel M, S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41. https://doi.org/10.1016/j.jip.2015.07.009
  • Lewis, E. E., Campbell, J., Griffin, C., Kaya, H., & Peters, A. (2006). Behavioral ecology of entomopathogenic nematodes. Biological Control, 38(1), 66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007
  • Nam, H. Y., Kwon, M., Kim, H. J., & Kim, J. (2020). Development of a species diagnostic molecular tool for an invasive pest, Mythimna loreyi, using LAMP. Insects, 11(11), 817. https://doi.org/10.3390/insects11110817
  • Navon, A., Keren, S., Salame, L., & Glazer, I. (1998). An edible-to-insects calcium alginate gel as a carrier for entomopathogenic nematodes. Biocontrol Science and Technology, 8, 429–437. https://doi.org/10.1080/09583159830225
  • Navon, A., Nagalakshmi, V. K., Levski, S., Salame, L., & Glazer, I. (2002). Effectiveness of entomopathogenic nematodes in an alginate gel formulation against lepidopterous pests. Biocontrol Science and Technology, 12, 737–746. https://doi.org/10.1080/0958315021000039914
  • Patil, J., Vijayakumar, R., Linga, V., & Sivakumar, G. (2020). Susceptibility of Oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae) larvae and pupae to native entomopathogenic nematodes. Journal of Applied Entomology, 144(7), 647–654. https://doi.org/10.1111/jen.12786
  • Peters, A. (2016). Formulation of nematodes. In T. Glare, & M. Moran-Diez (Eds.), Microbial-based biopesticides (pp. 121–135). Humana Press. https://doi.org/10.1007/978-1-4939-6367-6_10
  • Poinar Jr, G. O., & Grewal, P. S. (2012). History of entomopathogenic nematology. Journal of Nematology, 44(2), 153.
  • Qin, J., Zhang, L., Liu, Y., Sappington, T. W., Cheng, Y., Luo, L., & Jiang, X. (2017). Population projection and development of the Mythimna loreyi (Lepidoptera: Noctuidae) as affected by temperature: application of an age-stage, two-sex life table. Journal of Economic Entomology, 110(4), 1583–1591. https://doi.org/10.1093/jee/tox138
  • Ramakrishnan, J., Salame, L., Nasser, A., Glazer, I., & Ment, D. (2022). Survival and efficacy of entomopathogenic nematodes on exposed surfaces. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-08605-2
  • Ruiz-Vega, J., Cortés-Martínez, C. I., & García-Gutiérrez, C. (2018). Survival and infectivity of entomopathogenic nematodes formulated in sodium alginate beads. Journal of Nematology, 50(3), 273.
  • SAS Institute. (2012). SAS Enterprise Guide ver. 9.3.
  • Sertkaya, E., & Bayram, A. (2005). Parasitoid community of the loreyi leaf worm Mythimna (Acantholeucania) loreyi: Novel host-parasitoid associations and their efficiency in the eastern mediterranean region of Turkey. Phytoparasitica, 33, 441. https://doi.org/10.1007/BF0298139
  • Shapiro-Ilan, D. I., Brown, I., & Lewis, E. E. (2014). Freezing and desiccation tolerance in entomopathogenic nematodes: diversity and correlation of traits. Journal of Nematology, 46(1), 27.
  • Stock, S. P., & Goodrich-Blair, H. (2014). Nematode parasites, pathogens and associates of insects and invertebrates of economic importance. In A. Lacey L (Ed.), Manual of techniques in invertebrate pathology (pp. 373–426). Academic Press.
  • Woodring, J. L., & Kaya, H. K. (1988). Steinernematid and heterorhabditid nematodes: a handbook of biology and techniques (Vol. 331). Arkansas: Arkansas Agricultural Experiment Station.
  • Zhang, Y. Y., Guo, J. M., Wei, Z. Q., Zhang, X. T., Liu, S. R., Guo, H. F., & Dong, S. L. (2022). Identification and sex expression profiles of olfactory-related genes in Mythimna loreyi based on antennal transcriptome analysis. Journal of Asia-Pacific Entomology, 27, 101934. https://doi.org/10.1016/j.aspen.2022.101934

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.