230
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Lethal and sub-lethal effects of Cordyceps fumosorosea on the demography and biochemistry of Phenacoccus solenopsis

, ORCID Icon, , , & ORCID Icon
Pages 76-97 | Received 08 Apr 2022, Accepted 17 Dec 2022, Published online: 12 Jan 2023

References

  • Abbas, N., & Hafez, A. M. (2021). Resistance to insect growth regulators and age-stage, two-sex life table in Musca domestica from different dairy facilities. PloS One, 16, 1–19.
  • Abdul-Rassoul, M., Al-Malo, I., & Hermiz, F. (2015). First record and host plants of Solenopsis mealybug, Phenacoccus solenopsis Tinsley, 1898 (Hemiptera: Pseudococcidae) from Iraq. Journal of Biodiversity and Environmental Sciences, 7, 216–222.
  • Ahmed, A. (2013). Use of entomopathogenic fungi in biological control of cotton mealybug (Phenacoccus solenopsis) and mustard aphid (Lipaphis erysimi) Master's thesis. Department of Botany, University of Karachi, Pakistan. http://prr.hec.gov.pk/jspui/handle/123456789/15469
  • Ahmed, R., & Freed, S. (2021a). Biochemical resistance mechanisms against chlorpyrifos, imidacloprid and lambda-cyhalothrin in rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Crop Protection, 143, 105568. https://doi.org/10.1016/j.cropro.2021.105568
  • Ahmed, R., Freed, S., Naeem, A., & Akmal, M. (2021b). Activity of detoxification enzymes in Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) after exposure to Beauveria bassiana (Balsamo). Invertebrate Survival Journal, 108–118. doi:10.25431/1824-307X/isj.v18i1.108-118
  • Akintola, A., & Ande, A. (2008). First record of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on Hibiscus rosa-sinensis in Nigeria. Agriculture, 3, 1–3.
  • Avery, P. B., Wekesa, V. W., Hunter, W. B., Hall, D. G., McKenzie, C. L., Osborne, L. S., Powell, C. A., & Rogers, M. E. (2011). Effects of the fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae) on reduced feeding and mortality of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Biocontrol Science and Technology, 21(9), 1065–1078. https://doi.org/10.1080/09583157.2011.596927
  • Bilal, M., Freed, S., Ashraf, M. Z., & Muhammad, S. (2017). Enhanced activities of acetylcholinesterase, acid and alkaline phosphatases in Helicoverpa armigera after exposure to entomopathogenic fungi. Invertebrate Survival Journal, 14, 464–476. doi:10.25431/1824-307X/isj.v14i1.464-476
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Chen, Q., Li, N., Wang, X., Ma, L., Huang, J. B., & Huang, G. H. (2017). Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. PloS One, 12, e0173380. doi:10.1371/journal.pone.0173380
  • Chi, H. (1988). Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17(1), 26–34. https://doi.org/10.1093/ee/17.1.26
  • Chi, H. (1990). Timing of control based on the stage structure of pest populations: A simulation approach. Journal of Economic Entomology, 83(4), 1143–1150. https://doi.org/10.1093/jee/83.4.1143
  • Chi, H., & Su, H. Y. (2006). Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 35(1), 10–21. https://doi.org/10.1603/0046-225X-35.1.10
  • Chi, H., You, M., Atlihan, R., Smith, C. L., Kavousi, A., Özgökçe, M. S., Güncan, A., Tuan, S. J., Fu, J. W., & Xu, Y. Y. (2020). Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomologia Generalis, 40, 102–123. doi:10.1127/entomologia/2020/0936
  • Culik, M. P., & Gullan, P. J. (2016). A new pest of tomato and other records of mealybugs (Hemiptera: Pseudococcidae) from Espirito Santo, Brazil. Zootaxa, 964(1), 1–8. https://doi.org/10.11646/zootaxa.964.1.1
  • Dary, O., Georghiou, G., Parsons, E., & Pasteur, N. (1990). Microplate adaptation of Gomori’s assay for quantitative determination of general esterase activity in single insects. Journal of Economic Entomology, 83(6), 2187–2192. https://doi.org/10.1093/jee/83.6.2187
  • Ellman, G. L., Courtney, K. D., Jr, A. V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • El-Zahi, E. Z. S., Aref, S. A. E. S., & Korish, S. K. M. (2016). The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) as a new menace to cotton in Egypt and its chemical control. Journal of Plant Protection Research, 56(2), 111–115. https://doi.org/10.1515/jppr-2016-0017
  • Fan, J., Xie, Y., Xue, J., & Liu, R. (2013). The effect of Beauveria brongniartii and its secondary metabolites on the detoxification enzymes of the pine caterpillar, Dendrolimus tabulaeformis. Journal of Insect Science, 13, 34–44. https://doi.org/10.1673/031.013.4401
  • Fand, B. B., & Suroshe, S. S. (2015). The invasive mealy bug Phenacoccus solenopsis Tinsley, a threat to tropical and subtropical agricultural and horticultural production systems—a review. Crop Protection, 69, 34–43. https://doi.org/10.1016/j.cropro.2014.12.001
  • Freed, S., Jin, F. L., Naeem, M., Ren, S. X., & Hussian, M. (2012). Toxicity of proteins secreted by entomopathogenic fungi against Plutella xylostella (Lepidoptera: Plutellidae). International Journal of Agriculture and Biology, 14, 290–295.
  • Fuchs, T., Stewart, J., Minzenmayer, R., & Rose, M. (1991). First record of Phenacoccus solenopsis Tinsley in cultivated cotton in the United States. Southwestern Entomologist, 16, 215–221.
  • González-Mendoza, D., Leon-Jimenez, E., Estudillo-Diaz, E., De Oca, C. M., Rodriguez-Hernandez, L., Mendez-Trujillo, V., Tzintzun-Camacho, O., Duran-Hernandez, D., Grimaldo-Juarez, O., & Ceceña-Duran, C. (2019). Evaluación de productos comerciales basados en los hongos Isaria fumosorosea y Verticillium lecanii como alternativa en el control biológico de Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Revista de la Sociedad Entomológica Argentina, 78(3), 1–6. https://doi.org/10.25085/rsea.780301
  • Gopalakrishnan, S., Chen, F. Y., Thilagam, H., Qiao, K., Xu, W. F., & Wang, K. J. (2011). Modulation and interaction of immune-associated parameters with antioxidant in the immunocytes of crab Scylla paramamosain challenged with lipopolysaccharides. Evidence-Based Complementary and Alternative Medicine, 824962. doi:10.1155/2011/824962
  • Goryunova, T., Vainer, L., & Sidorov, V. (1991). Use of [3H]-Permethrin to evaluate esterase activity in caterpillars of Beet webworm Pyrausta sticticalis L. Agrokhimiya, 118–121.
  • Gul, H., Ullah, F., Biondi, A., Desneux, N., Qian, D., Gao, X., & Song, D. (2019). Resistance against clothianidin and associated fitness costs in the chive maggot, Bradysia odoriphaga. Entomologia Generalis, 39(2), 81–92. https://doi.org/10.1127/entomologia/2019/0861
  • Hajek, A. E., & St. Leger, R. J. (1994). Interactions between fungal pathogens and insect hosts. Annual Review of Entomology, 39(1), 293–322. https://doi.org/10.1146/annurev.en.39.010194.001453
  • Huang, Z., Ali, S., Ren, S. X., & Wu, J. H. (2010). Effect of Isaria fumosoroseus on mortality and fecundity of Bemisia tabaci and Plutella xylostella. Insect Science, 17(2), 140–148. https://doi.org/10.1111/j.1744-7917.2009.01299.x
  • Ismail, H. M., Freed, S., Naeem, A., Malik, S., & Ali, N. (2020). The effect of entomopathogenic fungi on enzymatic activity in chlorpyrifos-resistant mosquitoes, Culex quinquefasciatus (Diptera: Culicidae). Journal of Medical Entomology, 57(1), 204–213. https://doi.org/10.1093/jme/tjz143
  • Karar, H., Bashir, M. A., Haider, M., Haider, N., Khan, K. A., Ghramh, H. A., Ansari, M. J., Mutlu, Ç., & Alghanem, S. M. (2020). Pest susceptibility, yield and fiber traits of transgenic cotton cultivars in Multan, Pakistan. PloS One, 15, e0236340 (1-15). https://doi.org/10.1371/journal.pone.0236340
  • Kaur, S., Kaur, H. P., Kaur, K., & Kaur, A. (2011). Effect of different concentrations of Beauveria bassiana on development and reproductive potential of Spodoptera litura (Fabricius). Journal of Biopesticides, 4, 161–168.
  • Kaydan, M. B., Çalışkan, A., & Ulusoy, M. (2013). New record of invasive mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) in Turkey. EPPO Bulletin, 43(1), 169–171. https://doi.org/10.1111/epp.12015
  • Khan, M. A., Wahid, A., Ahmad, M., Tahir, M. T., Ahmed, M., Ahmad, S., & Hasanuzzaman, M. (2020). World cotton production and consumption: An overview. Cotton Production and Uses, 1–7. doi:10.1007/978-981-15-1472-2_1
  • LeOra, S. (2003). Poloplus, a user’s guide to probit or logit analysis. LeOra Software.
  • Mannino, M. C., Huarte-Bonnet, C., Davyt-Colo, B., & Pedrini, N. (2019). Is the insect cuticle the only entry gate for fungal infection? Insights into alternative modes of action of entomopathogenic fungi. Journal of Fungus, 5(2), 33–38. https://doi.org/10.3390/jof5020033
  • Mc Namara, L., Carolan, J. C., Griffin, C. T., Fitzpatrick, D., & Kavanagh, K. (2017). The effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth, Galleria mellonella. Journal of Insect Physiology, 100, 82–92. https://doi.org/10.1016/j.jinsphys.2017.05.009
  • Mc Namara, L., Griffin, C. T., Fitzpatrick, D., Kavanagh, K., & Carolan, J. C. (2018). The effect of entomopathogenic fungal culture filtrate on the immune response and haemolymph proteome of the large pine weevil, Hylobius abietis. Insect Biochemistry and Molecular Biology, 101, 1–13. https://doi.org/10.1016/j.ibmb.2018.07.001
  • Mesquita, A., Lacey, L., & Leclant, F. (1997). Individual and combined effects of the fungus, Paecilomyces fumosoroseus and parasitoid, Aphelinus asychis Walker (Hym., Aphelinidae) on confined populations of Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hom., Aphididae) under field conditions. Journal of Applied Entomology, 121(1-5), 155–163. https://doi.org/10.1111/j.1439-0418.1997.tb01386.x
  • Meyer, J. S., Ingersoll, C. G., McDonald, L. L., & Boyce, M. S. (1986). Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology, 67(5), 1156–1166. https://doi.org/10.2307/1938671
  • Moghaddam, M., & Bagheri, A. (2010). A new record of mealybug pest in the south of Iran, Phenacoccus solenopsis (Hemiptera: Coccoidea: Pseudococcidae). Journal of Entomological Society of Iran, 30, 67–69.
  • Nagrare, V., Fand, B. B., Naik, V. C. B., Naikwadi, B., Deshmukh, V., & Sinh, D. (2020). Resistance development in Cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) to insecticides from Organophosphate, Thiadiazines and Thiourea derivatives. International Journal of Tropical Insect Science, 40(1), 181–188. https://doi.org/10.1007/s42690-019-00068-9
  • Nagrare, V., Kranthi, S., Biradar, V., Zade, N., Sangode, V., Kakde, G., Shukla, R., Shivare, D., Khadi, B., & Kranthi, K. (2009). Widespread infestation of the exotic mealybug species, Phenacoccus solenopsis (Tinsley)(Hemiptera: Pseudococcidae), on cotton in India. Bulletin of Entomolgical Research, 99(5), 537–541. https://doi.org/10.1017/S0007485308006573
  • Nawaz, M., & Freed, S. (2022). Pathogenicity of different isolates of entomopathogenic fungi on cotton mealybug, Phenaccocus solenopsis Tinsley. Pakistan Journal of Zoology, 54(1), 275–282. https://doi.org/10.17582/journal.pjz/20161124031127
  • Nazar, M. Z., Freed, S., Hussain, S., Sumra, M. W., Shah, M. S., & Naeem, A. (2020). Characteristics of biochemical resistance mechanism of novel insecticides in Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Crop Protection, 138, 105320 (1-10). https://doi.org/10.1016/j.cropro.2020.105320
  • Ocampo, C. B., Salazar-Terreros, M. J., Mina, N. J., McAllister, J., & Brogdon, W. (2011). Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Tropica, 118(1), 37–44. https://doi.org/10.1016/j.actatropica.2011.01.007
  • Pan, Q. J., Chen, L., Lin, X. L., Ridsdill-Smith, T. J., & Liu, T. X. (2014). Geographical variations in life histories of Plutella xylostella in China. Journal of Pest Science, 87(4), 659–670. https://doi.org/10.1007/s10340-014-0608-0
  • Parsons, S. M., & Joern, A. (2014). Life history traits associated with body size covary along a latitudinal gradient in a generalist grasshopper. Oecologia, 174(2), 379–391. https://doi.org/10.1007/s00442-013-2785-6
  • Pelizza, S. A., Scorsetti, A. C., & Tranchida, M. C. (2013). The sublethal effects of the entomopathic fungus Leptolegnia chapmanii on some biological parameters of the dengue vector Aedes aegypti. Journal of Insect Science, 13(22), 1. https://doi.org/10.1673/031.013.2201
  • Pirithiraj, U., Soundararajan, R., & Chandrasekaran, M. (2021). Mealybugs-an invasive consternation to agricultural and horticultural crops. Biotica Research Today, 3, 246–251.
  • Prishanthini, M., & Vinobaba, M. (2009). First record of new exotic Mealybug species, Phenacoccus solenopsis Tinsley, 1898 (Hemiptera: Pseudococcidae), its Host range and abundance in the Eastern Sri Lanka. Journal of Science, 6, 88–100.
  • Quesada-Moraga, E., Santos-Quirós, R., Valverde-García, P., & Santiago-Alvarez, C. (2004). Virulence, horizontal transmission, and sublethal reproductive effects of Metarhizium anisopliae (Anamorphic fungi) on the German cockroach (Blattodea: Blattellidae). Journal of Invertebrate Pathology, 87(1), 51–58. https://doi.org/10.1016/j.jip.2004.07.002
  • Quesada-Moraga, E., & Vey, A. (2004). Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycological Research, 108(4), 441–452. https://doi.org/10.1017/S0953756204009724
  • Rajula, J., Rahman, A., & Krutmuang, P. (2020). Entomopathogenic fungi in Southeast Asia and Africa and their possible adoption in biological control. Biological Control, 104399 (1-9). https://doi.org/10.1016/j.biocontrol.2020.104399
  • Razaq, M., Mensah, R., & Athar, H. U. R. (2019). Insect pest management in cotton. Cotton Production, 85–107. https://doi.org/10.1002/9781119385523.ch5
  • Rozilawati, H., Tanaselvi, K., Th, M. Z., Zairi, J., Nazni, W., & Lee, H. (2018). Life table characteristics of Malaysian strain Aedes albopictus (Skuse). Serangga, 22, 5–22.
  • Sani, I., Ismail, S. I., Abdullah, S., Jalinas, J., Jamian, S., & Saad, N. (2020). A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects, 11(9), 619. https://doi.org/10.3390/insects11090619
  • Serebrov, V., Gerber, O., Malyarchuk, A., Martemyanov, V., Alekseev, A., & Glupov, V. (2006). Effect of entomopathogenic fungi on detoxification enzyme activity in greater wax moth Galleria mellonella L. (Lepidoptera, Pyralidae) and role of detoxification enzymes in development of insect resistance to entomopathogenic fungi. Biology Bulletin, 33(6), 581–586. https://doi.org/10.1134/S1062359006060082
  • Shahrajabian, M. H., Sun, W., & Cheng, Q. (2020). Considering white gold, cotton for its fiber, seed oil, traditional and modern health benefits. Journal of Biological & Environmental Sciences, 14, 25–39.
  • Shoukat, R. F., Zafar, J., Shakeel, M., Zhang, Y., Freed, S., Xu, X. X., & Jin, F. L. (2020). Assessment of lethal, sublethal, and transgenerational effects of Beauveria bassiana on the demography of Aedes albopictus (Culicidae: Diptera). Insects, 11(3), 178–194. https://doi.org/10.3390/insects11030178
  • Spodek, M., Ben-Dov, Y., Mondaca, L., Protasov, A., Erel, E., & Mendel, Z. (2018). The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) in Israel: pest status, host plants and natural enemies. Phytoparasitica, 46(1), 45–55. https://doi.org/10.1007/s12600-018-0642-1
  • Stauderman, K., Avery, P., Aristizábal, L., & Arthurs, S. (2012). Evaluation of Isaria fumosorosea (Hypocreales: Cordycipitaceae) for control of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae). Biocontrol Science and Technology, 22(7), 747–761. https://doi.org/10.1080/09583157.2012.686599
  • Tanaka, H., & Uesato, T. (2012). New records of some potential pest mealybugs (Hemiptera: Coccoidea: Pseudococcidae) in Japan. Applied Entomology and Zoology, 47(4), 413–419. https://doi.org/10.1007/s13355-012-0134-6
  • Tinsley, J. D. (1898). Notes on Coccidae, with descriptions of new species. Canadian Entomologist, 30(12), 317–320. https://doi.org/10.4039/Ent30317-12
  • Tong, H. J., Yan, A., Li, Z. H., Ying, W., & Jiang, M. X. (2019). Invasion biology of the cotton mealybug, Phenacoccus solenopsis Tinsley: Current knowledge and future directions. Journal of Integrative Agriculture, 18(4), 758–770. https://doi.org/10.1016/S2095-3119(18)61972-0
  • Tuan, S. J., Lee, C. C., & Chi, H. (2014). Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Management Science, 70(5), 805–813. https://doi.org/10.1002/ps.3618
  • Ullah, M. I., Arshad, M., Abdullah, A., Khalid, S., Iftikhar, Y., & Zahid, S. M. A. (2018). Use of the entomopathogenic fungi Beauveria bassiana (Hyphomycetes: Moniliales) and Isaria fumosorosea (Hypocreales: Cordycipitaceae) to control Diaphorina citri Kuwayama (Hemiptera: Liviidae) under laboratory and semi-field conditions. Egyptian Journal of Biological Pest Control, 28(1), 1–5. https://doi.org/10.1186/s41938-018-0071-y
  • Vontas, J. G., Enayati, A. A., Small, G. J., & Hemingway, J. (2000). A simple biochemical assay for glutathione S-transferase activity and its possible field application for screening lutathione S-transferase-based insecticide resistance. Pesticide Biochemistry and Physiology, 68(3), 184–192. https://doi.org/10.1006/pest.2000.2512
  • Wang, L., Zhang, Y., Xie, W., Wu, Q., & Wang, S. (2016). Sublethal effects of spinetoram on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 132, 102–107. https://doi.org/10.1016/j.pestbp.2016.02.002
  • Wang, Y., Watson, G. W., & Zhang, R. (2010). The potential distribution of an invasive mealybug Phenacoccus solenopsis and its threat to cotton in Asia. Agriculture and Forensic Entomology, 12(4), 403–416. https://doi.org/10.1111/j.1461-9563.2010.00490.x
  • Wu, G., Jiang, S., & Miyata, T. (2004). Effects of synergists on toxicity of six insecticides in parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae). Journal of Economic Entomology, 97(6), 2057–2066. https://doi.org/10.1093/jee/97.6.2057
  • Xiang, X., Liu, S., Wang, X., Zhang, Y., Gong, C., Chen, L., Zhang, S., & Shen, L. (2019). Sublethal effects of sulfoxaflor on population projection and development of the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Crop Protection, 120, 97–102. https://doi.org/10.1016/j.cropro.2019.02.016
  • Yu, J. Z., Chi, H., & Chen, B. H. (2005). Life table and predation of Lemnia biplagiata (Coleoptera: Coccinellidae) fed on Aphis gossypii (Homoptera: Aphididae) with a proof on relationship among gross reproduction rate, net reproduction rate, and preadult survivorship. Annals of Entomological Society of America, 98(4), 475–482. https://doi.org/10.1603/0013-8746(2005)098[0475:LTAPOL]2.0.CO;2
  • Yuan, H. G., Wu, S. Y., Lei, Z. R., Rondon, S. I., & Gao, Y. L. (2018). Sub-lethal effects of Beauveria bassiana (Balsamo) on field populations of the potato tuberworm Phthorimaea operculella Zeller in China. Journal of Integrative Agriculture, 17(4), 911–918. https://doi.org/10.1016/S2095-3119(17)61898-7
  • Zhang, P., Zhao, Y. H., Wang, Q. H., Mu, W., & Liu, F. (2017). Lethal and sublethal effects of the chitin synthesis inhibitor chlorfluazuron on Bradysia odoriphaga Yang and Zhang (Diptera: Sciaridae). Pesticide Biochemistry and Physiology, 136, 80–88. https://doi.org/10.1016/j.pestbp.2016.07.007
  • Zibaee, A., Bandani, A. R., & Tork, M. (2009). Effect of the entomopathogenic fungus, Beauveria bassiana, and its secondary metabolite on detoxifying enzyme activities and acetylcholinesterase (AChE) of the sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae). Biocontrol Science and Technology, 19(5), 485–498. https://doi.org/10.1080/09583150902847127
  • Zibaee, A., Jalali Sendi, J., Ghadamyari, M., Alinia, F., & Etebari, K. (2009). Diazinon resistance in different selected strains of Chilo suppressalis (Lepidoptera: Crambidae) in northern Iran. Journal of Economic Entomology, 102(3), 1189–1196. https://doi.org/10.1603/029.102.0343
  • Zou, C., Li, L., Dong, T., Zhang, B., & Hu, Q. (2014). Joint action of the entomopathogenic fungus Isaria fumosorosea and four chemical insecticides against the whitefly Bemisia tabaci. Biocontrol Science and Technology, 24(3), 315–324. https://doi.org/10.1080/09583157.2013.860427

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.