202
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Biocontrol of post-harvest tomato rot caused by Alternaria arborescens using Torulaspora indica

, &
Pages 115-132 | Received 20 Jun 2022, Accepted 26 Dec 2022, Published online: 09 Jan 2023

References

  • Agarbati, A., Canonico, L., Pecci, T., Romanazzi, G., Ciani, M., & Comitini, F. (2022). Biocontrol of Non-Saccharomyces yeasts in vineyard against the gray mold disease agent Botrytis cinerea. Microorganisms, 10(2), 200. https://doi.org/10.3390/microorganisms10020200
  • Andersen, B., Nielsen, K. F., Pinto, V. F., & Patriarca, A. (2015). Characterization of Alternaria strains from Argentinean blueberry, tomato, walnut and wheat. International Journal of Food Microbiology, 196, 1–10. https://doi.org/10.1016/j.ijfoodmicro.2014.11.029
  • Bar-Shimon, M., Yehuda, H., Cohen, L., Weiss, B., Kobeshnikov, A., Daus, A., Goldway, M., Wisniewski, M., & Droby, S. (2004). Characterization of extracellular lytic enzymes produced by the yeast biocontrol agent Candida oleophila. Current Genetics, 45(3), 140–148. https://doi.org/10.1007/s00294-003-0471-7
  • Bautista-Rosales, P. U., Calderon-Santoyo, M., Servín-Villegas, R., Ochoa-Álvarez, N. A., & Ragazzo-Sánchez, J. A. (2013). Action mechanisms of the yeast Meyerozyma caribbica for the control of the phytopathogen Colletotrichum gloeosporioides in mangoes. Biological Control, 65(3), 293–301. https://doi.org/10.1016/j.biocontrol.2013.03.010
  • Bello G., D., Mónaco, C., Rollan, M. C., Lampugnani, G., Arteta, N., Abramoff, C., Ronco, L., & Stocco, M. (2008). Biocontrol of postharvest grey mould on tomato by yeasts. Journal of Phytopathology, 156(5), 257–263. https://doi.org/10.1111/j.1439-0434.2007.01351.x
  • Cabral L., d. C., Rodríguez, A., Andrade, M. J., Patriarca, A., & Delgado, J. (2021). Effect of Debaryomyces hansenii and the antifungal PgAFP protein on alternaria spp. Growth, toxin production, and RHO1 gene expression in a tomato-based medium. Food Microbiology, 97, 103741. https://doi.org/10.1016/j.fm.2021.103741
  • Calvente, V., Orellano, M. E., Sansone, G., Benuzzi, D., & Tosetti, M. I. S. (2001). Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. Journal of Industrial Microbiology and Biotechnology, 26(4), 226–229. https://doi.org/10.1038/sj.jim.7000117
  • Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553–556. https://doi.org/10.1080/00275514.1999.12061051
  • Chen, P. H., Chen, R. Y., & Chou, J. Y. (2018). Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits. Mycobiology, 46(1), 33–46. https://doi.org/10.1080/12298093.2018.1454013
  • Chi, M., Li, G., Liu, Y., Liu, G., Li, M., Zhang, X., Sun, Z., Sui, Y., & Liu, J. (2015). Increase in antioxidant enzyme activity, stress tolerance and biocontrol efficacy of Pichia kudriavzevii with the transition from a yeast-like to biofilm morphology. Biological Control, 90, 113–119. https://doi.org/10.1016/j.biocontrol.2015.06.006
  • Droby, S., Chalutz, E., Wilson, C. L., & Wisniewski, M. E. (1989). Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Canadian Journal of Microbiology, 35(8), 794–800. https://doi.org/10.1139/m89-132
  • Droby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Porat, R. (2002). Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology, 92(4), 393–399. https://doi.org/10.1094/PHYTO.2002.92.4.393
  • Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137–145. https://doi.org/10.1016/j.postharvbio.2008.11.009
  • Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., & Jijakli, M. H. (2016). The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122, 22–29. https://doi.org/10.1016/j.postharvbio.2016.04.006
  • Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. https://doi.org/10.1080/10408398.2017.1417235
  • El-Tarabily. (2004). Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. Journal of Applied Microbiology, 96(1), 69–75. https://doi.org/10.1046/j.1365-2672.2003.02043.x
  • Escrivá, L., Oueslati, S., Font, G., & Manyes, L. (2017). Alternaria Mycotoxins in food and feed: An overview. Journal of Food Quality, 1–20. https://doi.org/10.1155/2017/1569748
  • Ferraz, L. P., da Cunha, T., da Silva, A. C., & Kupper, K. C. (2016). Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiological Research, 188-189, 72–79. https://doi.org/10.1016/j.micres.2016.04.012
  • Freimoser, F. M., Rueda-Mejia, M. P., Tilocca, B., & Migheli, Q. (2019). Biocontrol yeasts: Mechanisms and applications. World Journal of Microbiology and Biotechnology, 35(10), 1–19. https://doi.org/10.1007/s11274-019-2728-4
  • Giobbe, S., Marceddu, S., Scherm, B., Zara, G., Mazzarello, V. L., Budroni, M., & Migheli, Q. (2007). The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Research, 7(8), 1389–1398. https://doi.org/10.1111/j.1567-1364.2007.00301.x
  • Hall, T. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series. 41 (pp. 95–98).
  • He, D., Zheng, X. D., Yin, Y. M., Sun, P., & Zhang, H. Y. (2003). Yeast application for controlling apple postharvest diseases associated with Penicillium expansum. Botanical Bulletin of Academia Sinica, 44, 211–216.
  • Huang, R., Li, G. Q., Zhang, J., Yang, L., Che, H. J., Jiang, D. H., & Huang, H. C. (2011). Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 101(7), 859–869. https://doi.org/10.1094/PHYTO-09-10-0255
  • Johnson, L. (2008). Iron and siderophores in fungal–host interactions. Mycological Research, 112(2), 170–183. https://doi.org/10.1016/j.mycres.2007.11.012
  • Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Konsue, W., Dethoup, T., & Limtong, S. (2020). Biological control of fruit rot and anthracnose of postharvest mango by antagonistic yeasts from economic crops leaves. Microorganisms, 8(3), 317. https://doi.org/10.3390/microorganisms8030317
  • Korres, A. M., Buss, D. S., Ventura, J. A., & Fernandes, P. M. (2011). Candida krusei and Kloeckera apis inhibit the causal agent of pineapple fusariosis, Fusarium guttiforme. Fungal Biology, 115(12), 1251–1258. https://doi.org/10.1016/j.funbio.2011.09.001
  • Kurtzman, C. P., & Robnett, C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek, 73, 331–371. https://doi.org/10.1023/a:1001761008817
  • Lacerda, L. T., Gusmão, L. F., & Rodrigues, A. (2018). Diversity of endophytic fungi in Eucalyptus microcorys assessed by complementary isolation methods. Mycological Progress, 17(6), 719–727. https://doi.org/10.1007/s11557-018-1385-6
  • Li, R., Zhang, H., Liu, W., & Zheng, X. (2011). Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action. International Journal of Food Microbiology, 146(2), 151–156. https://doi.org/10.1016/j.ijfoodmicro.2011.02.015
  • Lima, J. R. D., Viana, F. M. P., Lima, F. A., Pieniz, V., & Gonçalves, L. R. B. (2014). Efficiency of a yeast-based formulation for the biocontrol of postharvest anthracnose of papayas. Summa Phytopathologica, 40(3), 203–211. https://doi.org/10.1590/0100-5405/1963
  • Liu, C. L., Lan, C. Y., Fu, C. C., & Juang, R. S. (2014). Production of hexaoligochitin from colloidal chitin using a chitinase from Aeromonas schubertii. International Journal of Biological Macromolecules, 69, 59–63. https://doi.org/10.1016/j.ijbiomac.2014.05.028
  • Liu, J., Sui, Y., Wisniewski, M., Droby, S., & Liu, L. (2013). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 167(2), 153–160. https://doi.org/10.1016/j.ijfoodmicro.2013.09.004
  • Mari, M., Martini, C., Guidarelli, M., & Neri, F. (2012). Postharvest biocontrol of Monilinia laxa, Monilinia fructicola and Monilinia fructigena on stone fruit by two Aureobasidium pullulans strains. Biological Control, 60(2), 132–140. https://doi.org/10.1016/j.biocontrol.2011.10.013
  • Marín, A., Atarés, L., Cháfer, M., & Chiralt, A. (2017). Properties of biopolymer dispersions and films used as carriers of the biocontrol agent Candida sake CPA-1. LWT - Food Science and Technology, 79, 60–69. https://doi.org/10.1016/j.lwt.2017.01.024
  • Masih, E. I., Alie, I., & Paul, B. (2000). Can the grey mould disease of the grape-vine be controlled by yeast? FEMS Microbiology Letters, 189(2), 233–237. https://doi.org/10.1111/j.1574-6968.2000.tb09236.x
  • Millan A., F.-S., Farran, I., Larraya, L., Ancin, M., Arregui, L. M., & Veramendi, J. (2020). Plant growth-promoting traits of yeasts isolated from Spanish vineyards: Benefits for seedling development. Microbiological Research, 237, 126480. https://doi.org/10.1016/j.micres.2020.126480
  • Nally, M. C., Pesce, V. M., Maturano, Y. P., Assaf, L. R., Toro, M. E., De Figueroa, L. C., & Vazquez, F. (2015). Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots. International Journal of Food Microbiology, 204, 91–100. https://doi.org/10.1016/j.ijfoodmicro.2015.03.024
  • Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
  • Nutaratat, P., Srisuk, N., Arunrattiyakorn, P., & Limtong, S. (2014). Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biology, 118(8), 683–694. https://doi.org/10.1016/j.funbio.2014.04.010
  • Oliveira, B. T., Bizarria Junior, R., Silva, L. G., & Rosa-Magri, M. M. (2019). Rhizosphere yeast Torulaspora globosa with plant growth promotion traits and improvement of the development of tomato seedlings under greenhouse conditions. African Journal of Agricultural Research, 14, 935–942. https://doi.org/10.5897/AJAR2019.13950
  • Palmieri, D., Ianiri, G., Del Grosso, C., Barone, G., De Curtis, F., Castoria, R., & Lima, G. (2022). Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae, 8(7), 577. https://doi.org/10.3390/horticulturae8070577
  • Parafati, L., Vitale, A., Restuccia, C., & Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiology, 47, 85–92. https://doi.org/10.1016/j.fm.2014.11.013
  • Patriarca, A., da Cruz Cabral, L., Pavicich, M. A., Nielsen, K. F., & Andersen, B. (2019). Secondary metabolite profiles of small-spored Alternaria support the new phylogenetic organization of the genus. International Journal of Food Microbiology, 291, 135–143. https://doi.org/10.1016/j.ijfoodmicro.2018.11.022
  • Podgórska-Kryszczuk, I., Solarska, E., & Kordowska-Wiater, M. (2022). Biological control of Fusarium culmorum, Fusarium graminearum and Fusarium poae by antagonistic yeasts. Pathogens (basel, Switzerland), 11(1), 86. https://doi.org/10.3390/pathogens11010086
  • Pu, L., Jingfan, F., Kai, C., Chao-An, L., & Yunjiang, C. (2014). Phenylethanol promotes adhesion and biofilm formation of the antagonistic yeast Kloeckera apiculata for the control of blue mold on citrus. FEMS Yeast Research, 14(4), 536–546. https://doi.org/10.1111/1567-1364.12139
  • Rambaut, A. (2016). Figtree v. 1.4.3. http://tree.bio.ed.ac.uk/software/figtree/2016.
  • R Core Team. (2021). R: A Language and Environment for Statistical Computing.; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 2 march 2022).
  • Rosa, M. M., Tauk-Tornisielo, S. M., Rampazzo, P. E., & Ceccato-Antonini, S. R. (2010). Evaluation of the biological control by the yeast Torulaspora globosa against Colletotrichum sublineolum in sorghum. World Journal of Microbiology and Biotechnology, 26(8), 1491–1502. https://doi.org/10.1007/s11274-010-0324-8
  • Rosa-Magri, M. M., Tauk-Tornisielo, S. M., & Ceccato-Antonini, S. R. (2011). Bioprospection of yeasts as biocontrol agents against phytopathogenic molds. Brazilian Archives of Biology and Technology, 54(1), 1–5. https://doi.org/10.1590/S1516-89132011000100001
  • RStudio Team. (2021). RStudio: Integrated Development Environment for R.; RStudio, PBC: Boston, MA, USA; Available online: http://www.rstudio.com/ (accessed on 2 March 2022).
  • Růžička, F., Holá, V., Votava, M., & Tejkalová, R. (2007). Importance of biofilm in Candida parapsilosis and evaluation of its susceptibility to antifungal agents by colorimetric method. Folia Microbiologica, 52(3), 209–214. https://doi.org/10.1007/BF02931300
  • Saligkarias, I. D., Gravanis, F. T., & Epton, H. A. S. (2002). Biological control of Botrytis cinerea on tomato plants using epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I–182: I. in vivo studies. Biological Control, 25(2), 143–150. https://doi.org/10.1016/S1049-9644(02)00051-8
  • Sampaio, J. P., Gadanho, M., Santos, S., Duarte, F. L., Pais, C., Fonseca, A., & Fell, J. W. (2001). Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: Rhodosporidium kratochvilovae and related anamorphic species. International Journal of Systematic and Evolutionary Microbiology, 51(2), 687–697. https://doi.org/10.1099/00207713-51-2-687
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
  • Sellitto, V. M., Zara, S., Fracchetti, F., Capozzi, V., & Nardi, T. (2021). Microbial biocontrol as an alternative to synthetic fungicides: Boundaries between pre-and postharvest applications on vegetables and fruits. Fermentation, 7(2), 60. https://doi.org/10.3390/fermentation7020060
  • Spadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47, 39–49. https://doi.org/10.1016/j.tifs.2015.11.003
  • Sui, Y., Wisniewski, M., Droby, S., & Liu, J. (2015). Responses of yeast biocontrol agents to environmental stress. Applied and Environmental Microbiology, 81(9), 2968–2975. https://doi.org/10.1128/AEM.04203-14
  • Tang, J., Liu, Y., Li, H., Wang, L., Huang, K., & Chen, C. (2015). Combining an antagonistic yeast with harpin treatment to control postharvest decay of kiwifruit. Biological Control, 89, 61–67. https://doi.org/10.1016/j.biocontrol.2015.04.025
  • Tu, Q., Chen, J., & Guo, J. (2013). Screening and identification of antagonistic bacteria with potential for biological control of Penicillium italicum of citrus fruits. Scientia Horticulturae, 150, 125–129. https://doi.org/10.1016/j.scienta.2012.10.018
  • Vero, S., Garmendia, G., González, M. B., Bentancur, O., & Wisniewski, M. (2013). Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus× domestica). FEMS Yeast Research, 13(2), 189–199. https://doi.org/10.1111/1567-1364.12021
  • Wang, Y., Bao, Y., Shen, D., Feng, W., Yu, T., Zhang, J., & Zheng, X. D. (2008). Biocontrol of Alternaria alternata on cherry tomato fruit by use of marine yeast Rhodosporidium paludigenum Fell & Tallman. International Journal of Food Microbiology, 123(3), 234–239. https://doi.org/10.1016/j.ijfoodmicro.2008.02.002
  • Wang, Y., Ren, X., Song, X., Yu, T., Lu, H., Wang, P., Wang, J., & Zheng, X. D. (2010b). Control of postharvest decay on cherry tomatoes by marine yeast Rhodosporidium paludigenum and calcium chloride. Journal of Applied Microbiology, 109(2), 651–656. https://doi.org/10.1111/j.1365-2672.2010.04693.x
  • Wang, Y., Yu, T., Xia, J., Yu, D., Wang, J., & Zheng, X. (2010a). Biocontrol of postharvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenum. Biological Control, 53(2), 178–182. https://doi.org/10.1016/j.biocontrol.2010.01.002
  • Zhang, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2011). Potential biocontrol activity of a strain of Pichia guilliermondii against grey mold of apples and its possible modes of action. Biological Control, 57(3), 193–201. https://doi.org/10.1016/j.biocontrol.2011.02.011
  • Zhang, H., Ge, L., Chen, K., Zhao, L., & Zhang, X. (2014). Enhanced biocontrol activity of Rhodotorula mucilaginosa cultured in media containing chitosan against postharvest diseases in strawberries: Possible mechanisms underlying the effect. Journal of Agricultural and Food Chemistry, 62(18), 4214–4224. https://doi.org/10.1021/jf500065n
  • Zhang, X., Wu, F., Gu, N., Yan, X., Wang, K., Dhanasekaran, S., Gu, X., Zhao, L., & Zhang, H. (2020). Postharvest biological control of Rhizopus rot and the mechanisms involved in induced disease resistance of peaches by Pichia membranefaciens. Postharvest Biology and Technology, 163, 111146. https://doi.org/10.1016/j.postharvbio.2020.111146
  • Zhao, Y., Tu, K. L., Shao, X. F., Jing, W., Yang, J. L., & Su, Z. P. (2008). Biological control of the post-harvest pathogens Alternaria solani, Rhizopus stolonifer, and Botrytis cinerea on tomato fruit by Pichia guilliermondii. The Journal of Horticultural Science and Biotechnology, 83(1), 132–136. https://doi.org/10.1080/14620316.2008.11512358

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.