176
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Potential bio-herbicide from Streptomyces sp. KR0005 to control weeds in a horticultural field

, , , , , , & show all
Pages 297-313 | Received 06 Oct 2022, Accepted 09 Jan 2023, Published online: 12 Mar 2023

References

  • Aung Bo, B., Botir, K., Mirjalol, U., Kwang Min, C., Kee Woong, P., & Jung Sup, C. (2020). Biological control using plant pathogens in weed management. Weed & Turfgrass Science, 9(1), 11–19. https://doi.org/10.5660/WTS.2020.9.1.11
  • Basu, S., Luthra, J., & Nigam, K. D. (2002). The effects of surfactants on adhesion, spreading, and retention of herbicide droplet on the surface of the leaves and seeds. Journal of Environmental Science and Health, Part B, 37(4), 331–344. https://doi.org/10.1081/pfc-120004474
  • Bayer, E., Gugel, K. H., Hägele, K., Hagenmaier, H., Jessipow, S., König, W. A., & Zähner, H. (1972). Stoffwechselprodukte von Mikroorganismen. 98. Mitteilung. Phosphinothricin und Phosphinothricyl-Alanyl-Alanin. Helvetica Chimica Acta, 55(1), 224–239. https://doi.org/10.1002/hlca.19720550126
  • Bhatti, A. A., Haq, S., & Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis, 111, 458–467. https://doi.org/10.1016/j.micpath.2017.09.036
  • Bo, A. B., Kim, J. D., Kim, Y. S., Sin, H. T., Kim, H. J., Khaitov, B., Ko, Y. K., Park, K. W., & Choi, J. S. (2019). Isolation, identification and characterization of Streptomyces metabolites as a potential bioherbicide. PLoS One, 14(9), e0222933. https://doi.org/10.1371/journal.pone.0222933
  • Boyette, C. D., Quimby, P. C., Caesar, A. J., Birdsall, J. L., Connick, W. J., Daigle, D. J., Jackson, M. A., Egley, G. H., & Abbas, H. K. (1996). Adjuvants, formulations, and spraying systems for improvement of mycoherbicides. Weed Technology, 10(3), 637–644. https://doi.org/10.1017/S0890037X00040562
  • Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. In S. Fleischer, & L. Packer (Eds.), Methods in enzymology (Vol. 52, pp. 302–310). Academic Press. https://doi.org/10.1016/S0076-6879(78)52032-6
  • Chauhan, B. S. (2020). Grand challenges in weed management [specialty grand challenge]. Frontiers in Agronomy, 1(3), 1–4. https://doi.org/10.3389/fagro.2019.00003
  • Choi, J.-S., Kim, Y. S., Kim, J. D., Kim, H. J., Young-Kwan, K., Park, K. W., & Moon, S.-S. (2017). Herbicidal characteristics of soil bacteria actinomycetes G-0299 to southern crabgrass. Weed & Turfgrass Science, 6(3), 212–221. https://doi.org/10.5660/WTS.2017.6.3.212
  • Christy, A. L., Herbst, K. A., Kostka, S. J., Mullen, J. P., & Carlson, P. S. (1993). Synergizing weed biocontrol agents with chemical herbicides. In Pest control with enhanced environmental safety (Vol. 524, pp. 87–100). American Chemical Society. https://doi.org/10.1021/bk-1993-0524.ch00710.1021/bk-1993-0524.ch007.
  • Chun, J. C., Cheol Kim, J., Taek Hwang, I., & Eun Kim, S. (2002). Acteoside from Rehmannia glutinosa nullifies paraquat activity in Cucumis sativus. Pesticide Biochemistry and Physiology, 72(3), 153–159. https://doi.org/10.1016/S0048-3575(02)00008-1
  • Daniel, J. J., Zabot, G. L., Tres, M. V., Harakava, R., Kuhn, R. C., & Mazutti, M. A. (2018). Fusarium fujikuroi: A novel source of metabolites with herbicidal activity. Biocatalysis and Agricultural Biotechnology, 14, 314–320. https://doi.org/10.1016/j.bcab.2018.04.001
  • Dayan, F. E., Ferreira, D., Wang, Y. H., Khan, I. A., McInroy, J. A., & Pan, Z. (2008). A pathogenic fungi diphenyl ether phytotoxin targets plant enoyl (acyl carrier protein) reductase. Plant Physiology, 147(3), 1062–1071. https://doi.org/10.1104/pp.108.118372
  • Dhanasekaran, D., Ambika, K., Thajuddin, N., & Panneerselvam, A. (2012). Allelopathic effect of actinobacterial isolates against selected weeds. Archives of Phytopathology and Plant Protection, 45(5), 505–521. https://doi.org/10.1080/03235408.2011.587988
  • Dinis-Oliveira, R. J., Remião, F., Carmo, H., Duarte, J. A., Navarro, A. S., Bastos, M. L., & Carvalho, F. (2006). Paraquat exposure as an etiological factor of Parkinson's disease. Neurotoxicology, 27(6), 1110–1122. https://doi.org/10.1016/j.neuro.2006.05.012
  • ECHA. (n.d.). https://echa.europa.eu/substance-information/-/substanceinfo/100.000.578
  • Engel, P. C., & Paradisi, F. (2010). 5.03 - Novel enzymes for biotransformation and resolution of alpha-amino acids. In H.-W. Liu, & L. Mander (Eds.), Comprehensive natural products II (pp. 71–90). Elsevier. https://doi.org/10.1016/B978-008045382-8.00700-0
  • Flores-Gallegos, A. C., & Nava-Reyna, E. (2019). Chapter 30 - plant growth-promoting microbial enzymes. In M. Kuddus (Ed.), Enzymes in food biotechnology (pp. 521–534). Academic Press. https://doi.org/10.1016/B978-0-12-813280-7.00030-X
  • Ghorbani, R., Leifert, C., & Seel, W. (2005). Biological control of weeds with antagonistic plant pathogens. Advances in agronomy, 86, 191–225. https://doi.org/10.1016/S0065-2113(05)86004-3
  • Grammel, N., Schwartz, D., Wohlleben, W., & Keller, U. (1998). Phosphinothricin-tripeptide synthetases from Streptomyces viridochromogenes. Biochemistry, 37(6), 1596–1603. https://doi.org/10.1021/bi9719410
  • Hack, R., Ebert, E., Ehling, G., & Leist, K. H. (1994). Glufosinate ammonium–some aspects of its mode of action in mammals. Food and Chemical Toxicology, 32(5), 461–470. https://doi.org/10.1016/0278-6915(94)90043-4
  • Hayakawa, M., & Nonomura, H. (1987). Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. Journal of Fermentation Technology, 65(5), 501–509. https://doi.org/10.1016/0385-6380(87)90108-7
  • Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332–1334. https://doi.org/10.1139/b79-163
  • Hwang, K., Eom, M., Park, S., Ok Jae, W., Lee, I., & Park, K. (2015). Occurrence and distribution of weed species on horticulture fields in Chungnam province of Korea. Journal of Ecology and Environment, 38(3), 353–360. https://doi.org/10.5141/ecoenv.2015.036
  • Igarashi, M., Kinoshita, N., Ikeda, T., Kameda, M., Hamada, M., & Takeuchi, T. (1997). Resormycin, a novel herbicidal and antifungal antibiotic produced by a strain of Streptomyces platensis. I. Taxonomy, production, isolation and biological properties. The Journal of Antibiotics, 50(12), 1020–1025. https://doi.org/10.7164/antibiotics.50.1020
  • Ioannis, B. V., Ilias, G. E., & Kico, V. D. (2000). Propanil-resistant barnyard grass (Echinochloa crus-galli) biotypes found in Greece. Weed Technology, 14(3), 524–529. https://doi.org/10.1614/0890-037X(2000)014[0524:PRBECG]2.0.CO;2
  • Jones, K. L. (1949). Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. Journal of Bacteriology, 57(2), 141–145. https://doi.org/10.1128/jb.57.2.141-145.1949
  • Joseph, N. A., & John, B. M. (2003). Interference of large crabgrass (Digitaria sanguinalis) with snap beans. Weed Science, 51(2), 171–176. https://doi.org/10.1614/0043-1745(2003)051[0171:IOLCDS]2.0.CO;2
  • Kahn, A., & Kannangara, C. G. (1987). Gabaculine-resistant mutants of Chlamydomonas reinhardtii with elevated glutamate 1-semialdehyde aminotransferase activity. Carlsberg Research Communications, 52(1), 73–81. https://doi.org/10.1007/BF02910429
  • Kenyon, W. H., Duke, S. O., & Vaughn, K. C. (1985). Sequence of effects of acifluorfen on physiological and ultrastructural parameters in cucumber cotyledon discs. Pesticide Biochemistry and Physiology, 24(2), 240–250. https://doi.org/10.1016/0048-3575(85)90134-8
  • Kim, H. J., Bo, A. B., Kim, J. D., Kim, Y. S., Khaitov, B., Ko, Y.-K., Cho, K. M., Jang, K.-S., Park, K. W., & Choi, J.-S. (2020). Herbicidal characteristics and structural identification of the potential active compounds from Streptomyces sp. KRA17-580. Journal of Agricultural and Food Chemistry, 68(52), 15373–15380. https://doi.org/10.1021/acs.jafc.0c01974
  • Kirkwood, R. C. (1993). Use and mode of action of adjuvants for herbicides: A review of some current work. Pesticide Science, 38(2-3), 93–102. https://doi.org/10.1002/ps.2780380205
  • K'Ominek L, A. (1975). Cycloheximide production by Streptomyces griseus: Control mechanisms of cycloheximide biosynthesis. Antimicrobial Agents and Chemotherapy, 7(6), 856–856. https://doi.org/10.1128/aac.7.6.856
  • Kondo, Y., Shomura, T., Ogawa, Y., Tsuruoka, T., Watanabe, H., Totsukawa, K., Suzuki, T., Moriyama, C., Yoshida, J., Inouye, S., & Niida, T. (1973). Studies on a new antibiotic SF-1293. I. Isolation and physico-chemical and biological characterization of SF-1293 substances. Scientific Reports of Meiji Seika, 13, 34–41.
  • Lawana, V., Korrapati, M. C., & Mehendale, H. M. (2014). Cycloheximide. In P. Wexler (Ed.), Encyclopedia of toxicology (3rd ed.) (pp. 1103–1105). Academic Press. https://doi.org/10.1016/B978-0-12-386454-3.00298-0
  • Lee, H. B., Kim, C. J., Kim, J. S., Hong, K. S., & Cho, K. Y. (2003). A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycete strain Streptomyces sp. 8E-12. Letters in Applied Microbiology, 36(6), 387–391. https://doi.org/10.1046/j.1472-765x.2003.01327.x
  • Liu, Z. (2004). Effects of surfactants on foliar uptake of herbicides – a complex scenario. Colloids and Surfaces B: Biointerfaces, 35(3), 149–153. https://doi.org/10.1016/j.colsurfb.2004.02.016
  • Mase, S. (1984). Meiji Herbiace (MW-801, SF-1293) (common name: bialaphos) A new herbicide. Japan Pesticide Information, (45), 27–30.
  • Müller, F., Ackermann, P., & Margot, P. (2012). Fungicides, agricultural, 2. Individual fungicides. In Ullmann's encyclopedia of industrial chemistry (6th ed., Vol. 2012). Wiley. https://doi.org/10.1002/14356007.o12_o06
  • Nakajima, M., Itoi, K., Takamatsu, Y., Kinoshita, T., Okazaki, T., Kawakubo, K., Shindo, M., Honma, T., Tohjigamori, M., & Haneishi, T. (1991). Hydantocidin: A new compound with herbicidal activity from Streptomyces hygroscopicus. Journal of Antibiotics (Tokyo), 44(3), 293–300. https://doi.org/10.7164/antibiotics.44.293
  • NCBI. (2022). PubChem compound summary for CID 6197, Cycloheximide. Retrieved July 11, 2022, from https://pubchem.ncbi.nlm.nih.gov/compound/Cycloheximide
  • Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture [review]. Frontiers in Public Health, 4(148), 1–8. https://doi.org/10.3389/fpubh.2016.00148
  • Nishino, T., & Murao, S. (1983). Isolation and some properties of an aspartate aminotransferase inhibitor, gostatin. Agricultural and Biological Chemistry, 47(9), 1961–1966. https://doi.org/10.1080/00021369.1983.10865895
  • OriginLab. (2021). Origin(Pro), 8.1. OriginLab corporation.
  • Priya dharsini, P., Dhanasekaran, D., Gopinath, P. M., Ramanathan, K., Shanthi, V., Chandraleka, S., & Biswas, B. (2017). Spectroscopic identification and molecular modeling of diethyl 7-hydroxytrideca-2, 5, 8, 11-tetraenedioate: A herbicidal compound from Streptomyces sp. Arabian Journal for Science and Engineering, 42(6), 2217–2227. https://doi.org/10.1007/s13369-016-2401-2
  • Priyadharsini, P., Dhanasekaran, D., & Kanimozhi, B. (2013). Isolation, structural identification and herbicidal activity of N-phenylpropanamide from Streptomyces sp. KA1-3. Archives of Phytopathology and Plant Protection, 46(3), 364–373. https://doi.org/10.1080/03235408.2012.758418
  • Rando, R. R. (1977). Mechanism of the irreversible inhibition of γ-aminobutyric acid-α-ketoglutaric acid transaminase by the neurotoxin gabaculine. Biochemistry, 16(21), 4604–4610. https://doi.org/10.1021/bi00640a012
  • Sanyal, D., Bhowmik, P., & Abbas, H. K. (2008). Effect of surfactants on bioherbicidal activity of Alternaria helianthi on multiple-seeded Cocklebur. Plant Pathology Journal, 7(1), 104–108, https://doi.org/10.3923/ppj.2008.104.108
  • Sapkota, A., Thapa, A., Budhathoki, A., Sainju, M., Shrestha, P., & Aryal, S. (2020). Isolation, characterization, and screening of antimicrobial-producing actinomycetes from soil samples. International Journal of Microbiology, 2020, 2716584. https://doi.org/10.1155/2020/2716584
  • Schütte, G., Eckerstorfer, M., Rastelli, V., Reichenbecher, W., Restrepo-Vassalli, S., Ruohonen-Lehto, M., Saucy, A. W., & Mertens, M. (2017). Herbicide resistance and biodiversity: Agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environmental Sciences Europe, 29(1), 1–12. https://doi.org/10.1186/s12302-016-0100-y
  • Sharma, A. (1999). Streptomyces. In R. K. Robinson (Ed.), Encyclopedia of food microbiology (pp. 2134–2138). Elsevier. https://doi.org/10.1006/rwfm.1999.1545
  • Shi, L., Wu, Z., Zhang, Y., Zhang, Z., Fang, W., Wang, Y., Wan, Z., Wang, K., & Ke, S. (2020). Herbicidal secondary metabolites from actinomycetes: Structure diversity, modes of action, and their roles in the development of herbicides. Journal of Agricultural and Food Chemistry, 68(1), 17–32. https://doi.org/10.1021/acs.jafc.9b06126
  • Streibig, J. C. (1980). Models for curve-fitting herbicide dose response data. Acta Agriculturae Scandinavica, 30(1), 59–64. https://doi.org/10.1080/00015128009435696
  • Subhashini, D. V. (2012). Bioherbicidal activity of Streptomyces spp isolated from tobacco rhizosphere against certain dicot and monocot weeds. The Indian Journal of Agricultural Sciences, 82(12), 1079–1082.
  • Ujváry, I. (2002). Transforming natural products into natural pesticides-experience and expectations. Phytoparasitica, 30(5), 439–442. https://doi.org/10.1007/BF02979747
  • Umurzokov, M., Lee, Y.-M., Kim, H. J., Cho, K. M., Kim, Y. S., Choi, J. S., & Park, K. W. (2022). Herbicidal characteristics and structural identification of a potential active compound produced by Streptomyces sp. KRA18–249. Pesticide Biochemistry and Physiology, 187, 105213. https://doi.org/10.1016/j.pestbp.2022.105213
  • Umurzokov, M., Sup-Choi, J., Ruziev, F., Young Sook, K., Kwang Min, C., & Kee Woong, P. (2021). Herbicidal activity of KRA16-334 broth filtrate on Sicyos angulatus. Weed & Turfgrass Science, 10(4), 437–443. https://doi.org/10.5660/WTS.2021.10.4.437
  • Valan Arasu, M., Duraipandiyan, V., Agastian, P., & Ignacimuthu, S. (2009). In vitro antimicrobial activity of Streptomyces spp. ERI-3 isolated from Western Ghats rock soil (India). Journal de Mycologie Médicale, 19(1), 22–28. https://doi.org/10.1016/j.mycmed.2008.12.002
  • Won, O. J., Kim, Y. T., Kim, J. D., Choi, J.-S., Ko, Y.-K., & Park, K. W. (2015). Herbicidal activity of herbicidin from a strain of soil actinomycete Streptomyces scopuliridis. Weed & Turfgrass Science, 4(3), 219–224. https://doi.org/10.5660/WTS.2015.4.3.219
  • Yang, J., Cao, H.-Z., Wang, W., Zhang, L.-h., & Dong, J.-g. (2014). Isolation, identification, and herbicidal activity of metabolites produced by Pseudomonas aeruginosa CB-4. Journal of Integrative Agriculture, 13(8), 1719–1726. https://doi.org/10.1016/S2095-3119(13)60695-4
  • Yasuor, H., TenBrook, P. L., Tjeerdema, R. S., & Fischer, A. J. (2008). Responses to clomazone and 5-ketoclomazone by Echinochloa phyllopogon resistant to multiple herbicides in Californian rice fields. Pest Management Science, 64(10), 1031–1039. https://doi.org/10.1002/ps.1604

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.