48
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

2-heptanone and 2,3-butanediol from endophytic Bacillus subtilis GEB-1 against root-knot nematode, Meloidogyne enterolobii: a computational and experimental approach

, , , , , & show all
Pages 579-600 | Received 05 Nov 2023, Accepted 17 May 2024, Published online: 04 Jun 2024

References

  • Abdullah, M. M., Khan, A., Albargi, H. B., Ahmad, M. Z., Ahmad, J., Ahmad, F., & Algethami, J. S. (2023). Ipomoea carnea associated phytochemicals and their in silico investigation towards meloidogyne incognita. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 73(1), 74–87.
  • Abebew, D., Sayedain, F. S., Bode, E., & Bode, H. B. (2022). Uncovering nematicidal natural products from xenorhabdus bacteria. Journal of Agricultural and Food Chemistry, 70(2), 498–506.
  • Adnani, N., Chevrette, M. G., Adibhatla, S. N., Zhang, F., Yu, Q., Braun, D.R., Nelson, J., Simpkins, S. W., McDonald, B. R., Myers, C. L., Piotrowski, J. S., Thompson, C. J., Currie C. R., Li, L., Rajski, S. R., & Bugni, T. S. (2017). Coculture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, keyicin. ACS Chemical Biology, 12(12), 3093–3102.
  • Aissani, N., Tedeschi, P., Maietti, A., Brandolini, V., Garau, V. L., & Caboni, P. (2013). Nematicidal activity of allylisothiocyanate from horseradish (Armoracia rusticana) roots against Meloidogyne incognita. Journal of Agricultural and Food Chemistry, 61(20), 4723–4727.
  • Aloo, B. N., Makumba, B. A., & Mbega, E. R. (2019). The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research, 219, 26–39.
  • Ayaz, M., Ali, Q., Farzand, A., Khan, A. R., Ling, H., & Gao, X. (2021a). Nematicidal volatiles from bacillus atrophaeus GBSC56 promote growth and stimulate induced systemic resistance in tomato against meloidogyne incognita. International Journal of Molecular Sciences, 22(9), 5049.
  • Ayaz, M., Ali, Q., Farzand, A., Khan, A. R., Ling, H., & Gao, X. (2021b). Nematicidal volatiles from bacillus atrophaeus GBSC56 promote growth and stimulate induced systemic resistance in tomato against Meloidogyne incognita. International Journal of Molecular Sciences, 22(9), 5049.
  • Baek, M., DiMaio, F., Anishchenko, I., (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557), 871–876.
  • Bienert, S., Waterhouse, A., De Beer, T. A., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL repository - new features and functionality. Nucleic Acids Research, 45(D1), D313–D319.
  • Bishopp, A., Help, H., & Helariutta, Y. (2009). Cytokinin signaling during root development. International Review of Cell and Molecular Biology, 276, 1–48.
  • Bui, H. X., Hadi, B. A., Oliva, R., & Schroeder, N. E. (2020). Beneficial bacterial volatile compounds for the control of root-knot nematode and bacterial leaf blight on rice. Crop Protection, 135, 104792.
  • Castagnone-sereno, P. (2012). Meloidogyne enterolobii ( =  M. Mayaguensis): profile of an emerging, highly pathogenic, root-knot nematode species. Nematology, 14(2), 133–138.
  • Castagnone-sereno, P., & Castillo, P. (2014). Meloidogyne enterolobii (Pacara earpod tree root-knot nematode).
  • Cheng, W., Yang, J., Nie, Q., Huang, D., Yu, C., Zheng, L., … & Zhang, J. (2017). Volatile organic compounds from paenibacillus polymyxa KM2501-1 control meloidogyne incognita by multiple strategies. Scientific Reports, 7(1), 16213.
  • Collett, R. L., Marais, M., Daneel, M., Rashidifard, M., & Fourie, H. (2021). Meloidogyne enterolobii,a threat to crop production with particular reference to sub-saharan Africa: An extensive, critical and updated review. Nematology, 23(3), 247–285.
  • Collett, R. L., Rashidifard, M., Marais, M., Daneel, M., & Fourie, H. (2024). Insights into the life-cycle development of Meloidogyne enterolobii, M. incognita and M. javanica on tomato, soybean and maize. European Journal of Plant Pathology, 168(1), 137–146.
  • Cui, L., Yang, C., Wei, L., Li, T., & Chen, X. (2020). Isolation and identification of an endophytic bacteria bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biological Control, 141, 104156.
  • Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 61(1), 651–679.
  • De Vrieze, M., Pandey, P., Bucheli, T. D., Varadarajan, A. R., Ahrens, C. H., Weisskopf, L., & Bailly, A. (2015). Volatile organic compounds from native potato-associated pseudomonas as potential anti-oomycete agents. Frontiers in Microbiology, 6, 1295. 1–15.
  • Fira, D., Dimki, c. I., Beri´c, T., Lozo, J., & Stankovi´c, S. (2018). Biological control of plant pathogens by bacillus species. Journal of Biotechnology, 285, 44–55.
  • Ganeshan, S., Annaiyan, S., Haran, R., Jayakanthan, M., Prabhu, S., Shanmugam, H., Kathithachalam, A., & Arun, A. (2024). Exploiting the nematicidal compounds from guava endo microbiome against root-knot nematodes, Meloidogyne enterolobii. Physiological and Molecular Plant Pathology, 131, 102268 .
  • Gao, H., Qi, G., Yin, R., Zhang, H., Li, C., & Zhao, X. (2016). Bacillus cereus strain S2 shows high nematicidal activity against meloidogyne incognita by producing sphingosine. Scientific Reports, 6(1), 1–11.
  • Gao, Z., Zhang, B., Liu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against alternaria solani and botrytis cinerea. Biological Control, 105, 27–39.
  • Geng, C., Nie, X., Tang, Z., Zhang, Y., Lin, J., Sun, M., & Peng, D. (2016). A novel serine protease, Sep1, from bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Scientific Reports, 6(1), 1–12.
  • Haegeman, A., Mantelin, S., Jones, J. T., & Gheysen, G. (2012). Functional roles of effectors of plant-parasitic nematodes. Gene, 492(1), 19–31.
  • Huang, D., Yu, C., Shao, Z., Cai, M., Li, G., Zheng, L., Yu, Z., & Zhang, J. (2020). Identification and characterization of nematicidal volatile organic compounds from deep-sea Virgibacillus dokdonensis MCCC 1A00493. Molecules, 25(3), 744.
  • Hussey, R.S., Janssen, G.J.W. (2002). Root-knot nematodes: Meloidogyne species (43–70). CABI Publishing. https://doi.org/10.1079/9780851994666.0043
  • Kai, M., & Piechulla, B. (2010). Impact of volatiles of the rhizobacteria serratia odorifera on the moss physcomitrella patens. Plant Signaling & Behavior, 5(4), 444–446.
  • Kammerhofer, N., Radakovic, Z., Regis, J. M., Dobrev, P., Vankova, R., Grundler, F. M., Siddique, S., Hofmann, J., & Wieczorek, K. (2015). Role of stress-related hormones in plant defense during early infection of the cyst nematode heterodera schachtii in arabidopsis. New Phytologist, 207(3), 778–789.
  • Keerthiraj, M., Mandal, A., Dutta, T. K., Saha, S., Dutta, A., Singh, A., & Kundu, A. (2021). Nematicidal and molecular docking investigation of essential oils from Pogostemon cablin ecotypes against meloidogyne incognita. Chemistry & Biodiversity, 18(9), e2100320.
  • Keswani, C., Singh, H.B., García-Estrada, C., Caradus, J., He, Y.W., Mezaache-Aichour, S., Glare, T.R., Borriss, R., Sansinenea, E., 2020. Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Applied Microbiology and Biotechnology, 104 (3), 1013–1034. 104:3.
  • Khalid, S., & Keller, N. P. (2021). Chemical signals driving bacterial–fungal interactions. Environmental Microbiology, 23(3), 1334–1347.
  • Khanna, V., & Ranganathan, S. (2011). In silico approach to screen compounds active against parasitic nematodes of major socio-economic importance. BMC Bioinformatics, 12(13), 1–12. BioMed Central.
  • Khoja, S., Eltayef, K. M., Baxter, I., Myrta, A., Bull, J. C., & Butt, T. (2021). Volatiles of the entomopathogenic fungus, metarhizium brunneum, attract and kill plant parasitic nematodes. Biological Control, 152 (104472).
  • Li, N., Pan, F. J., Han, X. Z., & Zhang, B. (2016). Development of soil food web of microbes and nematodes under different agricultural practices during the early stage of pedogenesis of a mollisol. Soil Biology and Biochemistry, 98, 208–216.
  • Lu, H., Xu, S., Zhang, W., Xu, C., Li, B., Zhang, D., Mu, W., & Liu, F. (2017). Nematicidal activity of trans-2-hexenal against southern root-knot nematode (meloidogyne incognita) on tomato plants. Journal of Agricultural and Food Chemistry, 65(3), 544–550.
  • Malagón, D., Benítez, R., Kašný, M., & Adroher, F. J. (2013). Peptidases in parasitic nematodes. A Review. Parasites: Ecology, Diseases and Management, 61–102.
  • Molinari, S., Fanelli, E., & Leonetti, P. (2014). Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. Molecular Plant Pathology, 15(3), 255–264.
  • Naveed, M., Ishfaq, H., Rehman, S. U., Javed, A., Waseem, M., Makhdoom, S. I., Aziz, T., Alharbi, M., Alshammari, A., & Alasmari, A. F. (2023). Gc–MS profiling of bacillus spp. Metabolites with an in vitro biological activity assessment and computational analysis of their impact on epithelial glioblastoma cancer genes. Frontiers in Chemistry, 11, 1–14.
  • Philbrick, A. N., Adhikari, T. B., Louws, F. J., & Gorny, A. M. (2020). Meloidogyne enterolobii, a major threat to tomato production: Current status and future prospects for its management. Frontiers in Plant Science, 11, 606395.
  • Rashidifard, M., Marais, M., Daneel, M. S., Mienie, C. M., & Fourie, H. (2019). Molecular characterisation of Meloidogyne enterolobii and other Meloidogyne spp. from South Africa. Tropical Plant Pathology, 44, 213–224.
  • Raza, W., Ling, N., Yang, L., Huang, Q., & Shen, Q. (2016). Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Scientific Reports, 6(1), 1–13.
  • Saravanan, R., Saranya, N., Ragapriya, V., Rajaswaminathan, V., Kavino, M., Krishnamoorthy, A. S., & Nakkeeran, S. (2022). Nematicidal property of clindamycin and 5-hydroxy-2-methyl furfural (HMF) from the banana endophyte Bacillus velezensis (YEBBR6) against banana burrowing nematode radopholus similis. Indian Journal of Microbiology, 62(3), 364–373.
  • Shandeep, G., Annaiyan, S., Somasundaram, P., Mannu, J., Kathithachalam, A., Shanmugam, H., & Arunchalam, A. (2023). Biomolecule repository of endophytic bacteria from guava serves as a key player in suppressing root-knot nematode, meloidogyne enterolobii. Scientia Horticulturae, 324 112627.
  • Singh, B. P., Rateb, M. E., Rodriguez-Couto, S., Teixeira de Moraes Polizeli, M. L., & Li, W.-J. (2019). Editorial: Microbial secondary metabolites: Recent developments and technological challenges. Frontiers in Microbiology, 10, 914.
  • Song, G. C., & Ryu, C. M. (2013). Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. International Journal of Molecular Sciences, 14(5), 9803–9819.
  • Tahir, H. A., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by bacillus subtilis SYST2. Frontiers in Microbiology, 8, 171.
  • Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology, 17(6), 613–620.
  • Taylor, D. (2015). The pharmaceutical industry and the future of drug development. Royal Society of Chemistry.
  • Veronico, P., Sasanelli, N., Troccoli, A., Myrta, A., Midthassel, A., & Butt, T. (2023). Evaluation of fungal volatile organic compounds for control the plant parasitic nematode Meloidogyne incognita. Plants, 12(10), 1935.
  • Vijay, S., Renukadevi, P., & Mangammal, P. (2023). Investigations on black root rot disease of mulberry caused by Lasiodiplodia theobromae. Archives of Phytopathology and Plant Protection, 56(7), 587–603.
  • Wicaksono, W. A., Jones, E. E., Casonato, S., Monk, J., & Ridgway, H. J. (2018). Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biological control, 116, 103–112.
  • Wolstenholme, A. J. (2011). Ion channels and receptor as targets for the control of parasitic nematodes. International Journal for Parasitology: Drugs and Drug Resistance, 1(1), 2–13.
  • Yang, T., Xin, Y., Liu, T., Li, Z., Liu, X., Wu, Y., Wang Mingfeng, Xiang, M. (2022). Bacterial volatile-mediated suppression of root-knot nematode (meloidogyne incognita). Plant Disease, 106(5), 1358–1365.
  • Yang, X., Khan, S., Zhao, X., Khan, S., Zhao, X., Zhang, J., Nisar, A., & Feng, X. (2020). Suppression of hyaluronidase reduces invasion and establishment of Haemonchus contortus larvae in sheep. Veterinary Research, 51(106).
  • Zhai, Y., Shao, Z., Cai, M., Zheng, L., Li, G., Huang, D., Cheng, W., Thomashow, L. S., Weller, D. M., Yu, Z., & Zhang, J. (2018). Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from Antarctic soil against Meloidogyne incognita. Frontiers in Microbiology, 9(253).
  • Zhang, Y., Li, S., Li, H., Wang, R., Zhang, K. Q., & Xu, J. (2020). Fungi–nematode interactions: Diversity, ecology, and biocontrol prospects in agriculture. Journal of Fungi, 6(4), 206–230.
  • Zou, C., Li, Z., & Yu, D. (2010). Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. The Journal of Microbiology, 48(4), 460.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.