34
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Changes in tomato plant anti-herbivore defences after soil application of a biofungicide containing Bacillus subtilis (Serenade ASO)

& ORCID Icon
Pages 718-735 | Received 26 Sep 2023, Accepted 22 Jun 2024, Published online: 03 Jul 2024

References

  • Agostini, J. P., Bushong, P. M., & Timmer, L. W. (2003). Greenhouse evaluation of products that induce host resistance for control of scab, melanose, and Alternaria brown spot of citrus. Plant Disease, 87(1), 69–74. https://doi.org/10.1094/PDIS.2003.87.1.69
  • Agrawal, A. A. (1999). Induced responses to herbivory in wild radish: Effects on several herbivores and plant fitness. Ecology, 80(5), 1713–1723. https://doi.org/10.1890/0012-9658(1999)080[1713:IRTHIW]2.0.CO;2
  • Ali, J., Tonğa, A., Islam, T., Mir, S., Mukarram, M., Konôpková, A. S., & Chen, R. (2024). Defense strategies and associated phytohormonal regulation in Brassica plants in response to chewing and sap-sucking insects. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1376917
  • Andrade, M. C., da Silva, A. A., Neiva, I. P., Oliveira, I. R. C., De Castro, E. M., Francis, D. M., & Maluf, W. R. (2017). Inheritance of type IV glandular trichome density and its association with whitefly resistance from Solanum galapagense accession LA1401. Euphytica, 213(2), 52. https://doi.org/10.1007/s10681-016-1792-1
  • Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances, 16(4), 729–770. https://doi.org/10.1016/S0734-9750(98)00003-2
  • Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001
  • Bhonwong, A., Stout, M. J., Attajarusit, J., & Tantasawat, P. (2009). Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). Journal of Chemical Ecology, 35(1), 28–38. https://doi.org/10.1007/s10886-008-9571-7
  • Bi, J. L., & Felton, G. W. (1995). Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. Journal of Chemical Ecology, 21(10), 1511–1530. https://doi.org/10.1007/BF02035149
  • Bosch, M., Berger, S., Schaller, A., & Stintzi, A. (2014). Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC Plant Biology, 14(1), 257. https://doi.org/10.1186/s12870-014-0257-8
  • Boughton, A. J., Hoover, K., & Felton, G. W. (2005). Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. Journal of Chemical Ecology, 31(9), 2211–2216. https://doi.org/10.1007/s10886-005-6228-7
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Carmona, D., Lajeunesse, M. J., & Johnson, M. T. J. (2011). Plant traits that predict resistance to herbivores. Functional Ecology, 25(2), 358–367. https://doi.org/10.1111/j.1365-2435.2010.01794.x
  • Chandra, P., Wunnava, A., Verma, P., Chandra, A., & Sharma, R. K. (2021). Strategies to mitigate the adverse effect of drought stress on crop plants—influences of soil bacteria: A review. Pedosphere, 31(3), 496–509. https://doi.org/10.1016/S1002-0160(20)60092-3
  • Chen, G., Escobar-Bravo, R., Kim, H. K., Leiss, K. A., & Klinkhamer, P. G. L. (2018). Induced Resistance Against Western Flower Thrips by the Pseudomonas syringae-Derived Defense Elicitors in Tomato. Frontiers in Plant Science, 9, 1417. https://doi.org/10.3389/fpls.2018.01417
  • Chung, S. H., Rosa, C., Hoover, K., Luthe, D. S., & Felton, G. W. (2013). Colorado potato beetle manipulates plant defenses in local and systemic leaves. Plant Signaling & Behavior, 8(12), e27592. https://doi.org/10.4161/psb.27592
  • del Rosario Cappellari, L., Santoro, M. V., Reinoso, H., Travaglia, C., Giordano, W., & Banchio, E. (2015). Anatomical, morphological, and phytochemical effects of inoculation with plant growth- promoting rhizobacteria on peppermint (Mentha piperita). Journal of Chemical Ecology, 41(2), 149–158. https://doi.org/10.1007/s10886-015-0549-y
  • de Souza Marinke, L., de Resende, J. T. V., Hata, F. T., Dias, D. M., de Oliveira, L. V. B., Ventura, M. U., Zanin, D. S., & de Lima Filho, R. B. (2022). Selection of tomato genotypes with high resistance to Tetranychus evansi mediated by glandular trichomes. Phytoparasitica, 50(3), 629–643. https://doi.org/10.1007/s12600-022-00984-6
  • Eichenseer, H., Mathews, M. C., Powell, J. S., & Felton, G. W. (2010). Survey of a salivary effector in caterpillars: Glucose oxidase variation and correlation with host range. Journal of Chemical Ecology, 36(8), 885–897. https://doi.org/10.1007/s10886-010-9830-2
  • Falco, M. C., Marbach, P. A. S., Pompermayer, P., Lopes, F. C. C., & Silva-Filho, M. C. (2001). Mechanisms of sugarcane response to herbivory. Genetics and Molecular Biology, 24(1-4), 113–122. https://doi.org/10.1590/S1415-47572001000100016
  • Felton, G. W., Donato, K. K., Broadway, R. M., & Duffey, S. S. (1992). Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodoptera exigua. Journal of Insect Physiology, 38(4), 277–285. https://doi.org/10.1016/0022-1910(92)90128-Z
  • Felton, G. W., Donato, K., Del Vecchio, R. J., & Duffey, S. S. (1989). Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. Journal of Chemical Ecology, 15(12), 2667–2694. https://doi.org/10.1007/BF01014725
  • Figueiredo, M. d. V. B., Bonifacio, A., Rodrigues, A. C., & de Araujo, F. F. (2016). Plant growth-promoting rhizobacteria: Key mechanisms of action. In D. K. Choudhary, & A. Varma (Eds.), Microbial-mediated induced systemic resistance in plants (pp. 23–37). Springer. https://doi.org/10.1007/978-981-10-0388-2_3
  • Firdaus, S., van Heusden, A. W., Hidayati, N., Supena, E. D. J., Visser, R. G. F., & Vosman, B. (2012). Resistance to Bemisia tabaci in tomato wild relatives. Euphytica, 187(1), 31–45. https://doi.org/10.1007/s10681-012-0704-2
  • Fürstenberg-Hägg, J., Zagrobelny, M., & Bak, S. (2013). Plant defense against insect herbivores. International Journal of Molecular Sciences, 14(5), Article 5. https://doi.org/10.3390/ijms140510242
  • Gilardi, G., Pugliese, M., Gullino, M. L., & Garibaldi, A. (2019). Nursery treatments with resistant inducers, soil amendments and biocontrol agents for the management of the Fusarium wilt of lettuce under glasshouse and field conditions. Journal of Phytopathology, 167(2), 98–110. https://doi.org/10.1111/jph.12778
  • Glas, J. J., Schimmel, B. C. J., Alba, J. M., Escobar-Bravo, R., Schuurink, R. C., & Kant, M. R. (2012). Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences, 13(12), 17077–17103. https://doi.org/10.3390/ijms131217077
  • Hanafi, A., Traoré, M., Schnitzler, W., & Woitke, M. (2007). Induced resistance of tomato to whiteflies and pythium with the PGPR Bacillus subtilis in a soilless crop grown under greenhouse conditions. Acta Horticulturae, 747, 315–323. https://doi.org/10.17660/ActaHortic.2007.747.38
  • Hartz, T., Miyao, G., Mickler, J., Lestrange, M., Stoddard, S., Nuñez, J., & Aegerter, B. (2008). Processing Tomato Production in California. https://doi.org/10.3733/ucanr.7228.
  • Kariyat, R. R., Hardison, S. B., Ryan, A. B., Stephenson, A. G., De Moraes, C. M., & Mescher, M. C. (2018). Leaf trichomes affect caterpillar feeding in an instar-specific manner. Communicative & Integrative Biology, 11(3), 1–6. https://doi.org/10.1080/19420889.2018.1486653
  • Kariyat, R. R., Smith, J. D., Stephenson, A. G., De Moraes, C. M., & Mescher, M. C. (2017). Non-glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proceedings Biological Sciences, 284(1849), 20162323. https://doi.org/10.1098/rspb.2016.2323
  • Kloepper, J. W., Ryu, C.-M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11), 1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  • Krause, M. S., De Ceuster, T. J. J., Tiquia, S. M., Michel, F. C., Madden, L. V., & Hoitink, H. a. J. (2003). Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology, 93(10), 1292–1300. https://doi.org/10.1094/PHYTO.2003.93.10.1292
  • Lahlali, R., Peng, G., Gossen, B. D., McGregor, L., Yu, F. Q., Hynes, R. K., Hwang, S. F., McDonald, M. R., & Boyetchko, S. M. (2013). Evidence that the biofungicide Serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology, 103(3), 245–254. https://doi.org/10.1094/PHYTO-06-12-0123-R
  • Lucatti, A. F., van Heusden, A. W., de Vos, R. C., Visser, R. G., & Vosman, B. (2013). Differences in insect resistance between tomato species endemic to the Galapagos Islands. BMC Evolutionary Biology, 13(1), 175. https://doi.org/10.1186/1471-2148-13-175
  • Magotra, S., Trakroo, D., Ganjoo, S., & Vakhlu, J. (2016). Bacillus-mediated-induced systemic resistance (ISR) against fusarium corm Rot. In D. K. Choudhary, & A. Varma (Eds.), Microbial-mediated induced systemic resistance in plants (pp. 15–22). Springer. https://doi.org/10.1007/978-981-10-0388-2_2
  • Maluf, W. R., Maciel, G. M., Gomes, L. A. A., Cardoso, M., das, G., Gonçalves, L. D., da Silva, E. C., & Knapp, M. (2010). Broad-spectrum arthropod resistance in hybrids between high- and low-acylsugar tomato lines. Crop Science, 50(2), 439–450. https://doi.org/10.2135/cropsci2009.01.0045
  • Marasco, R., Rolli, E., Ettoumi, B., Vigani, G., Mapelli, F., Borin, S., Abou-Hadid, A. F., El-Behairy, U. A., Sorlini, C., Cherif, A., Zocchi, G., & Daffonchio, D. (2012). A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One, 7(10), e48479. https://doi.org/10.1371/journal.pone.0048479
  • Musser, R. O., Cipollini, D. F., Hum-Musser, S. M., Williams, S. A., Brown, J. K., & Felton, G. W. (2005). Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Archives of Insect Biochemistry and Physiology, 58(2), 128–137. https://doi.org/10.1002/arch.20039
  • Myers, J. H., & Sarfraz, R. M. (2017). Impacts of insect herbivores on plant populations. Annual Review of Entomology, 62(1), 207–230. https://doi.org/10.1146/annurev-ento-010715-023826
  • Pan, Q., Shikano, I., Hoover, K., Liu, T.-X., & Felton, G. W. (2019). Enterobacter ludwigii, isolated from the gut microbiota of Helicoverpa zea, promotes tomato plant growth and yield without compromising anti-herbivore defenses. Arthropod-Plant Interactions, 13(2), 271–278. https://doi.org/10.1007/s11829-018-9634-9
  • Parnell, J. J., Berka, R., Young, H. A., Sturino, J. M., Kang, Y., Barnhart, D. M., & DiLeo, M. V. (2016). From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Frontiers in Plant Science, 7, 1110. https://doi.org/10.3389/fpls.2016.01110
  • Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52(1), 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340
  • Pineda, A., Dicke, M., Pieterse, C. M. J., & Pozo, M. J. (2013). Beneficial microbes in a changing environment: Are they always helping plants to deal with insects? Functional Ecology, 27(3), 574–586. https://doi.org/10.1111/1365-2435.12050
  • Rasmann, S., Chassin, E., Bilat, J., Glauser, G., & Reymond, P. (2015). Trade-off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production. Journal of Experimental Botany, 66(9), 2527–2534. https://doi.org/10.1093/jxb/erv033
  • Riera, N., Wang, H., Li, Y., Li, J., Pelz-Stelinski, K., & Wang, N. (2018). Induced systemic resistance against citrus canker disease by rhizobacteria. Phytopathology, 108(9), 1038–1045. https://doi.org/10.1094/PHYTO-07-17-0244-R
  • Shavit, R., Ofek-Lalzar, M., Burdman, S., & Morin, S. (2013). Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci. Frontiers in Plant Science, 4, 306. https://doi.org/10.3389/fpls.2013.00306
  • Shikano, I., Rosa, C., Tan, C.-W., & Felton, G. W. (2017). Tritrophic interactions: Microbe-mediated plant effects on insect herbivores. Annual Review of Phytopathology, 55(1), 313–331. https://doi.org/10.1146/annurev-phyto-080516-035319
  • Singh, S., Pathak, R., & Chaudhary, V. (2016). Plant growth-promoting rhizobacteria-mediated acquired systemic resistance in plants against pests and diseases (pp. 125–134). https://doi.org/10.1007/978-981-10-0388-2_8
  • Smith, J. L., De Moraes, C. M., & Mescher, M. C. (2009). Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Management Science, 65(5), 497–503. https://doi.org/10.1002/ps.1714
  • Stout, M. J., Workman, J., & Duffey, S. S. (1994). Differential induction of tomato foliar proteins by arthropod herbivores. Journal of Chemical Ecology, 20(10), 2575–2594. https://doi.org/10.1007/BF02036193
  • Stout, M. J., Workman, K. V., Workman, J. S., & Duffey, S. S. (1996). Temporal and ontogenetic aspects of protein induction in foliage of the tomato, Lycopersicon esculentum. Biochemical Systematics and Ecology, 24(7), 611–625. https://doi.org/10.1016/S0305-1978(96)00075-0
  • Thaler, J. S., Humphrey, P. T., & Whiteman, N. K. (2012). Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science, 17(5), 260–270. https://doi.org/10.1016/j.tplants.2012.02.010
  • Tian, D., Peiffer, M., Shoemaker, E., Tooker, J., Haubruge, E., Francis, F., Luthe, D. S., & Felton, G. W. (2012). Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant. PLoS One, 7(4), e36168. https://doi.org/10.1371/journal.pone.0036168
  • Traw, B. M., & Dawson, T. E. (2002). Differential induction of trichomes by three herbivores of black mustard. Oecologia, 131(4), 526–532. https://doi.org/10.1007/s00442-002-0924-6
  • Van Oosten, V. R., Bodenhausen, N., Reymond, P., Van Pelt, J. A., Van Loon, L. C., Dicke, M., & Pieterse, C. M. J. (2008). Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Molecular Plant-Microbe Interactions: MPMI, 21(7), 919–930. https://doi.org/10.1094/MPMI-21-7-0919
  • Wang, X.-W., Li, P., & Liu, S.-S. (2017). Whitefly interactions with plants. Current Opinion in Insect Science, 19, 70–75. https://doi.org/10.1016/j.cois.2017.02.001
  • Weinhold, A., & Baldwin, I. (2011). Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7855–7859. https://doi.org/10.1073/pnas.1101306108
  • Zehnder, G. W., Yao, C., Murphy, J. F., Sikora, E. R., & Kloepper, J. W. (2000). Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. BioControl, 45(1), 127–137. https://doi.org/10.1023/A:1009923702103
  • Zhang, P.-J., Broekgaarden, C., Zheng, S.-J., Snoeren, T. A. L., van Loon, J. J. A., Gols, R., & Dicke, M. (2013). Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytologist, 197(4), 1291–1299. https://doi.org/10.1111/nph.12106
  • Zhang, Y., Luan, H., Wei, Z., Hao, Z., Xi, R., & Liao, X. (2016). Exploiting of honey-associated Bacillus strains as plant-growth promoting bacteria for enhancing barley growth in rare earth tailings. Annals of Microbiology, 66(2), 559–568. https://doi.org/10.1007/s13213-015-1135-9
  • Züst, T., & Agrawal, A. A. (2016). Mechanisms and evolution of plant resistance to aphids. Nature Plants, 2(1), 15206. https://doi.org/10.1038/nplants.2015.206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.