239
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Degradation of triphenylborane–pyridine antifouling agent in water by copper ions

, , , , &
Pages 2835-2840 | Received 11 Oct 2012, Accepted 21 Mar 2013, Published online: 08 May 2013

References

  • Okamura H, Mieno H. Present status of the antifouling systems in Japan: TBT substitutes in Japan. Antifouling paint biocides. In Konstantinou I K, editor. The handbook of environmental chemistry. Berlin: Springer, Part O; 2006;5: p. 201–212
  • Amey R L, Waldron C. Efficacy and chemistry of borocide P triphenylboron-pyridine, a non-metal anti-fouling biocide. Proceeding of International Symposium on antifouling paint and marine environment. Tokyo, Japan. 2004. p. 234–243
  • Eisch J J, Shah J H, Boleslawski M P. Skeletal rearrangements of arylborane complexes mediated by redox reactions: thermal and photochemical oxidation by metal ions. J Organomet Chem. 1994;464:11–21 doi: 10.1016/0022-328X(94)87003-9
  • Crawford C L, Barnes M J, Peterson R A, Wilmarth W R, Hyder M L. Copper-catalyzed sodium tetraphenylborate, triphenylborane, diphenylborinic acid and phenylboronic acid decomposition kinetic studies in aqueous alkaline solutions. J Organomet Chem. 1999;581:194–206 doi: 10.1016/S0022-328X(99)00065-0
  • Hsu C W, White T L. Development of high-performance liquid chromatographic methods for measuring tetraphenylborate decomposition products in radioactive alkaline solutions. J Chromatogr A. 1998;828:461–467 doi: 10.1016/S0021-9673(98)00654-2
  • International Standard (ISO). Paint and varnishes-determination of release rate of biocides from antifouling paints Part 4: determination of pyridine-triphenylborane (PTPB) concentration in the extract and calculation of the release rate. Ref. no. ISO 15181–4. 2008(E). p. 1–12.
  • Zhou X, Okamura H, Nagata S. Abiotic degradation of triphenylborane pridine (TPBP) antifouling agent in water. Chemosphere. 2007;67:1904–1910 doi: 10.1016/j.chemosphere.2006.12.007
  • Okamura H, Kitano S, Toyota S, Harino H, Thomas K V. Ecotoxicity of the degradation products of triphenylborane pyridine (TPBP) antifouling agent. Chemosphere. 2009;74:1275–1278 doi: 10.1016/j.chemosphere.2008.11.014
  • Yakushiji Y, Fukushi K, Okamura H, Hashimoto Y, Miyado T, Saito K. Evaluation for degradation of pyridine-triphenylborane anti-fouling agent in acetonitrile using capillary zone electrophoresis (in Japanese). Bunseki Kagaku. 2009;58:301–304 doi: 10.2116/bunsekikagaku.58.301
  • Fukushi K, Yakushiji Y, Okamura H, Hashimoto Y, Saito K. Simultaneous determination of a pyridine-triphenylborane anti-fouling agent and its estimated degradation products using capillary zone electrophoresis. J Chromatogr A. 2010;1217:2187–2190 doi: 10.1016/j.chroma.2010.01.087
  • Kaewchuay N, Yakushiji Y, Fukushi K, Saito K, Hirokawa T. A novel hybrid mode of sample injection to enhance CZE sensitivity for simultaneous determination of a pyridine-triphenylborane anti-fouling agent and its degradation products. Electrophoresis. 2011;32:1486–1491 doi: 10.1002/elps.201100144
  • Jun Z, Oshima M, Motomizu S. Determination of boron with chromotropic acid by high-performance liquid chromatography. Analyst1988;113:1631–1634
  • Oshima M, Motomizu S, Jun Z. Fluorometric determination of boric acid by high performance liquid chromatography after derivatization with chromotropic acid. Anal Sci. 1990;6:627–628 doi: 10.2116/analsci.6.627
  • Ketelaar J AA, Gersmann H R, Beck M M. Metal catalyzed hydrolysis of thiophosphoric esters. Nature. 1956;177:392–393 doi: 10.1038/177392b0
  • Mortland M M, Raman K V. Catalytic hydrolysis of some organic phosphate pesticides by copper (II). J Agr Food Chem. 1967;15:163–167 doi: 10.1021/jf60149a015
  • Blanchet P F, St-George A. Kinetics of chemical degradation of organophosphorus pesticides; hydrolysis of chlorpyrifos and chloryrifos-methyl in the presence of copper. Pest Sci. 1982;13:85–91 doi: 10.1002/ps.2780130113
  • Smolen J M, Stone A T. Divalent metal ion-catalyzed hydrolysis of phosphorothionate ester pesticides and their corresponding oxonates. Environ Sci Technol. 1997;31:1664–1673 doi: 10.1021/es960499q
  • Clark CJI I, Chen X S, Babu S. Degradation of toxaphene by zero-valent iron and bimetallic substrates. J Environ Eng. 2005;131:1733–1739 doi: 10.1061/(ASCE)0733-9372(2005)131:12(1733)
  • Liu T, Sun C, Ta N, Hong J, Yang S G, Chen C X. Effect of copper on the degradation of pesticides cypermethrin and cyhalothrin. J Environ Sci. 2007;19:1235–1238 doi: 10.1016/S1001-0742(07)60201-0
  • Filipe O M, Vidal M M, Duarte A C, Santos E BH. Influence of fulvic acids and copper ions on thiram determination in water. J Agr Food Chem. 2008;56:7347–7354 doi: 10.1021/jf800774t
  • Liu C S, Shih K, Sun C X, Wang F. Oxidative degradation of propachlor by ferrous and copper ion activated persulfate. Sci Total Environ. 2012;416:507–512 doi: 10.1016/j.scitotenv.2011.12.004
  • Liu D, Pacepavicius G J, Maguire R J, Lau Y L, Okamura H, Aoyama I. Mercuric chloride-catalyzed hydrolysis of the new antifouling compound Irgarol 1051. Water Res. 1999;33:155–163 doi: 10.1016/S0043-1354(98)00186-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.