389
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Combined ultrasonic and bioleaching treatment of hospital waste incinerator bottom ash with simultaneous extraction of selected metals

, , &
Pages 262-270 | Received 29 Jan 2013, Accepted 20 Jun 2013, Published online: 25 Aug 2013

References

  • Gidarakos E, Petrantonakia M, Anastasiadoua K, Schramm KW. Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste. J Hazard Mater. 2009;172:935–942. doi: 10.1016/j.jhazmat.2009.07.080
  • Bo D, Zhang FS, Zhao L. Influence of supercritical water treatment on heavy metals in medical waste incinerator fly ash. J Hazard Mater. 2009;170:66–71. doi: 10.1016/j.jhazmat.2009.04.134
  • Tanaka M, Kaneko N, Takahara N, Shekdar AV. Sustainable health care waste management in Japan. Proceedings of International Solid Waste Association (ISWA) Congress, Rome, Italy; 2004.
  • Sukander S, Yasuda K, Tanaka M, Aoyama I. Metals leachability from medical waste incinerator fly ash. A case study on particle size comparison. Environ Poll. 2006;144: 726–735.
  • Zhao L, Zhang FS, Wang K, Zhu J. Chemical properties of heavy metals in typical hospital waste incinerator ashes in China. Waste Manage. 2008;29:1114–1121.
  • Li M, Xiang J, Hu S, Sun LS, Su S, Li PS, Sun XX. Characterization of solid residues from municipal solid waste incinerator. Fuel. 2004;83:1397–1405.
  • Ibanez R, Andres A, Viguri JR. Characterization of management of incinerator wastes. J Hazard Mater. 2000;A79: 215–227. doi: 10.1016/S0304-3894(00)00268-5
  • Kougemitrou I, Godelitsas A, Tsabaris C, Stathopoulos V, Papandreou A, Gamaletsos P, Economou G, Papadopoulos D. Characterization and management of ash produced in the hospital waste incinerator of Athens, Greece. J Hazard Mater. 2011;187:421–432. doi: 10.1016/j.jhazmat.2011.01.045
  • Zhao L, Zhang FS, Chen M, Liu Z, Wu DBJ. Typical pollutants in bottom ashes from a typical medical waste incinerator. J Hazard Mater. 2010;173:181–185. doi: 10.1016/j.jhazmat.2009.08.066
  • Ahmady-Asbchin S, Tabaraki R, Jafari N, Allahverdi A, Azhdehakoshpour A. Study of nickel and copper biosorption on brown algae Sargassum angustifolium: application of response surface methodology (RSM). Environ Technol. 2013. doi:10.1080/09593330.2013.772643
  • Xu F, Miao H, Huang Z, Ren H, Zhao M, Ruan W. Performance and dynamic characteristics of microbial communities in an internal circulation reactor for treating brewery waste water. Environ Technol. 2013. doi:10.1080/09593330.2013.796003
  • Akcil A, Deveci H. Chapter 4: Mineral biotechnology of sulphides. In Jain S, Khan A, Rai MK, editors. Geomicrobiology. Enfield, NH: Science Publishers; 2010, p. 101–137.
  • Avvaru B, Roy SB, Chowdhury SC, Hareendran KN, Pandit NB. Enhancement of the leaching rate of uranium in the presence of ultrasound. Ind Eng Chem Res. 2006;45:7639–7648. doi: 10.1021/ie060599x
  • Zhang Z, Dai X, Wang C, Qi W, Li X, Zhang J, Xia S. Ultrasound-promoted extraction of cheap microbial flocculant from waste activated sludge. Environ Technol. 2013;34(10):1219–1224.
  • Swamy KM, Narayana KL, Vibhuti N, Misra S. Bioleaching with ultrasound. Ultrason Sonochem. 2005;12:301–306. doi: 10.1016/j.ultsonch.2004.01.035
  • Rezic I. Optimization of ultrasonic extraction of 23 elements from cotton. Ultrason Sonochem. 2009;16:63–69. doi: 10.1016/j.ultsonch.2008.04.007
  • Mason TJ. Developments in ultrasound – non-medical-review. Progr Biophys Mol Biol. 2007;93:166–175. doi: 10.1016/j.pbiomolbio.2006.07.007
  • Sukla LB, Swamy KM, Narayana KL, Kar RN, Panchanadikar VV. Bioleaching of Sukinda laterite using ultrasonics. Hydrometallurgy. 1995;37:387–391. doi: 10.1016/0304-386X(94)00031-W
  • Anjum F, Bhatti HN, Ghauri MA. Enhanced bioleaching of metals from black shale using ultrasonics. Hydrometallurgy. 2010;3–4(100):122–128. doi: 10.1016/j.hydromet.2009.10.016
  • Barzik WA, Kowal A, Pomianowski A, Rakowska A. SEM/EDX and AFM study of gold cementation on copper (i) sulphide. Physicochem Probl Min Process. 2002;36: 9–20.
  • Snell FD. Photometric and fluorimetric methods of analysis. New York: Wiley; 1972.
  • Steel RGD, Torrie JH, Dickery D. Principles and procedures of statistics. A biomaterial approach. 3rd ed. New York: McGraw-Hill; 1997.
  • McBride MB. Environmental chemistry of soil. New York: Oxford University Press; 1994.
  • Chang FY, Wey MY. Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. J Hazard Mater. 2006;138(3):594–603. doi: 10.1016/j.jhazmat.2006.05.099
  • Saikia N, Cornelis G, Mertens G, Elsen J, Balen KV, Gerven TV, Vandecasteele C. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar. J Hazard Mater. 2008;154(1–3):766–777. doi: 10.1016/j.jhazmat.2007.10.093
  • Idris A, Saed K. Characteristics of slag produced from incinerated hospital waste. J Hazard Mater. 2002;93:201–208. doi: 10.1016/S0304-3894(02)00010-9
  • Genazzini C, Zerbino R, Ronco A, Bati O, Giaccio G. Hospital waste ashes in Portland cement mortars. Cem Concr Res. 2003;33:1643–1650. doi: 10.1016/S0008-8846(03)00109-1
  • Kumar R, Patel DK, Kumar RA. Survey of trace metals determination in hospital waste incinerator in Lucknow city, India. Health J, Allied Sci. 2004;2:2–4.
  • Chen S, Hung M, Huang K, Hwang W. Emission of heavy metals from carcass incinerators in Taiwan. Chemosphere. 2004;55:1197–1205. doi: 10.1016/j.chemosphere.2003.12.020
  • Zhang FS, Yamasaki S, Nanzyo M. Waste ashes for use in agricultural production: I. Liming effect, contents of plant nutrients and chemical characteristics of some metals. Sci Total Environ. 2002;284:215–225. doi: 10.1016/S0048-9697(01)00887-7
  • Kuo HW, Shu SL, Wu CC, Lai JS. Characteristics of medical waste. Water Air Soil Pollut. 1999;114:413–421. doi: 10.1023/A:1005169032759
  • Alibhai KA, Dudeney WL, Leak DJ, Agatizini S, Tzeferis P. Bioleaching and bioprecipitation of nickel and iron from laterites. FEMS Microbiol Rev. 1993;11:86–96. doi: 10.1111/j.1574-6976.1993.tb00271.x
  • Lafond S, Blais J, Mercier G, Martel R. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil. Environ Technol. 2013. doi:10.1080/09593330.2013.770560
  • Huang K, Inoue K, Harada H, Kawakita H, Ohto K. Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants. Trans Nonferr Met Soc China. 2011;21:1422–1427. doi: 10.1016/S1003-6326(11)60876-5
  • Tang JA, Valizx M. Leaching of low grade limonite and natronite ores by fungi metabolic acids. Min Eng. 2006;19:1274–1279. doi: 10.1016/j.mineng.2006.04.009
  • Santhiya D, Ting YP. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. J Biotechnol. 2005;116:171–184. doi: 10.1016/j.jbiotec.2004.10.011
  • Zhang F, He Z. A cooperative microbial fuel cell system for waste treatment and energy recovery. Environ Technol. 2013. doi:10.1080/09593330.2013.770540
  • Burgstaller W, Strasser H, Woking H, Schinner F. Solubilization of zinc oxide from filter dust with Penicillium simplicissimum: bioreactor leaching and stoichiometry. Environ Sci Technol. 1992;26:340–346. doi: 10.1021/es00026a015
  • Xu TJ, Ting YP. Optimization on bioleaching of incinerator fly ash by a Spergillus niger – use of central composite design. Enz Microb Technol. 2004;5(35):444–454. doi: 10.1016/j.enzmictec.2004.07.003
  • Wang Q, Yang J, Wang Q, Wu T. Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash. J Hazard Mater. 2009;23(162):812–818. doi: 10.1016/j.jhazmat.2008.05.125
  • Yang J, Wang Q, Luo Q, Wang Q, Wu T. Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger. Biochem Eng J. 2009;3(46):294–299. doi: 10.1016/j.bej.2009.05.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.