318
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd‒Cu catalysts

, &
Pages 347-354 | Received 08 Apr 2013, Accepted 15 Jul 2013, Published online: 13 Sep 2013

REFERENCES

  • Xie X, Li Y, Liu Z, Haruta M, Shen W. Low temperature oxidation of CO catalysed by Co3O4 nanorods. Nature. 2009;458:746–749. doi: 10.1038/nature07877
  • Yu Y, Takei T, Ohashi H, He H, Zhang X, Haruta M. Pretreatment of Co3O4 at moderate temperature for CO oxidation at −80°C. J Catal. 2009;267:121–128. doi: 10.1016/j.jcat.2009.08.003
  • Domagala ME, Campbell CT. The mechanism of CO oxidation over Cu(110): effect of CO gas energy. Catal Lett. 1991;9:65–70. doi: 10.1007/BF00769083
  • Cheng T, Fang Z, Hu Q, Han K, Yang X, Zhang Y. Low temperature CO oxidation over CuO/Fe2O3 catalysts. Catal Commun. 2007;8:1167–1171. doi: 10.1016/j.catcom.2006.11.002
  • Iablokov V, Frey K, Geszti O, Kruse N. High catalytic activity in CO oxidation over MnOjx nanocrystals. Catal Lett. 2010;134:210–216. doi: 10.1007/s10562-009-0244-0
  • Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR. The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B: Environ. 2003;43:151–162. doi: 10.1016/S0926-3373(02)00297-7
  • Ravandi AB, Rezaei M. Low temperature CO oxidation over Fe–Co mixed oxide nanocatalysts. Chem Eng J. 2012;184:141–146. doi: 10.1016/j.cej.2012.01.017
  • Taylor SH, Hutchings GJ, Mirzaei AA. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catal Today. 2003;84: 113–119. doi: 10.1016/S0920-5861(03)00264-5
  • Jones C, Cole KJ, Taylor SH, Crudace MJ, Hutchings GJ. Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation: effect of calcinations on activity. J Mol Catal A: Chem. 2009;305:121–124. doi: 10.1016/j.molcata.2008.10.027
  • Yung MM, Holmgreen EM, Ozkan US. Low-temperature oxidation of carbon monoxide on Co/ZrO2. Catal Lett. 2007;118:180–186. doi: 10.1007/s10562-007-9216-4
  • Haruta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal. 1989;115: 301–309. doi: 10.1016/0021-9517(89)90034-1
  • Shen Y, Lu G, Guo Y, Wang Y. A synthesis of high- efficiency Pd‒Cu‒Cljx/Al2O3 catalyst for low temperature CO oxidation. Chem Commun. 2010;46:8433–8435. doi: 10.1039/c0cc02776f
  • Frey K, Yablokov V, Melaet G, Guczi L, Kruse N. CO oxidation activity of Ag/TiO2 catalysts prepared via oxalate coprecipitation. Catal Lett. 2008;124:74–79. doi: 10.1007/s10562-008-9485-6
  • Liu L, Zhou F, Wang L, Qi X, Shi F, Deng Y. Low-temperature CO oxidation over supported Pt, Pd catalysts: particular role of FeOjx support for oxygen supply during reactions. J Catal. 2010;274:1–10. doi: 10.1016/j.jcat.2010.05.022
  • Shen Y, Guo Y, Wang L, Wang Y, Guo Y, Gong X, Lu G. The stability and deactivation of Pd‒Cu‒Cljx/Al2O3 catalyst for low temperature CO oxidation: an effect of moisture. Catal Sci Technol. 2011;1:1202–1207. doi: 10.1039/c1cy00146a
  • Lee JS, Park ED, Song BJ. Process development for low temperature CO oxidation in the presence of water and halogen compounds. Catal Today. 1999;54:57–64. doi: 10.1016/S0920-5861(99)00168-6
  • Huang X, Sun H, Wang L, Liu Y, Fan K, Cao Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low temperature CO oxidation. Appl Catal B: Environ. 2009;90:224–232. doi: 10.1016/j.apcatb.2009.03.015
  • Li S, Liu G, Lian H, Jia M, Zhao G, Jiang D, Zhang W. Low temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method. Catal Commun. 2008;9:1045–1049. doi: 10.1016/j.catcom.2007.10.016
  • Choi KI, Vannice MA. CO oxidation over Pd and Cu catalyst I. Unreduced PdCl2 and CuCl2 dispersed on alumina or carbon. J Catal. 1994;127:465–488. doi: 10.1016/0021-9517(91)90179-8
  • Park ED, Lee JS. Effect of surface treatment of the support on CO oxidation over carbon-supported Wacker-Type catalysts. J Catal. 2000;193:5–15. doi: 10.1006/jcat.2000.2879
  • Choi KI, Vannice MA. CO oxidation over Pd and Cu catalysts II. Unreduced bimetallic PdCl2‒CuCl2 dispersed on Al2O3 or carbon. J Catal. 1991;127:489–511. doi: 10.1016/0021-9517(91)90180-C
  • Kim KD, Nam IS, Chung JS, Lee JS, Ryu SG, Yang YS. Supported PdCl2‒CuCl2 catalysts for carbon monoxide oxidation 1. Effect of catalyst composition and reaction conditions. Appl Catal B: Environ. 1994;5:103–115. doi: 10.1016/0926-3373(94)00029-8
  • Cullity BD. Elements of X-ray diffraction. 2nd ed. Menlo Park, CA: Addison-Wesley; 1978.
  • Lambert S, Heinrichs B, Brasseur A, Rulmont A, Pirard JP. Determination of surface composition of alloy nanoparticles and relationships with activity in Pd‒Cu/SiO2 cogelled xerogel catalysts. Appl Cata. A: Gen. 2004;270: 201–208. doi: 10.1016/j.apcata.2004.05.005
  • Groppo E, Agostini G, Piovano A, Muddada NB, Leofanti G, Pellegrini R, Portale G, Longo A, Lamberti C. Effect of reduction in liquid phase on the properties and the catalytic activity of Pd/Al2O3 catalysts. J Catal. 2012;287:44–54. doi: 10.1016/j.jcat.2011.11.018
  • Shi J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Catal Rev. 2013;113:2139–2181.
  • Shen W, Okumura M, Matsumura Y, Haruta M. The influence of the support on the activity and selectivity of Pd in CO hydrogenation. Appl Catal A: Gen. 2001;213:225–232. doi: 10.1016/S0926-860X(01)00465-3
  • Sermon PA, Bond GC. Hydrogen spillover. Catal Rev. 1974;8:211–239. doi: 10.1080/01614947408071861
  • Garcia MF, Anderson JA, Haller GL. Alloy formation and stability in Pd‒Cu bimetallic catalysts. J Phys Chem. 1996;100:16247–16254. doi: 10.1021/jp9608133
  • Batista J, Pintar A, Mandrino D, Jenko M, Martin V. XPS and TPR examination of γ-alumina-supported Pd-Cu catalysts. Appl Catal A: Gen. 2001;206:113–124. doi: 10.1016/S0926-860X(00)00589-5
  • Park ED, Lee JS. Effects of copper phase on CO oxidation over supported Wacker-Type catalysts. J Catal. 1998;180:123–131. doi: 10.1006/jcat.1998.2263
  • Wang L, Feng Y, Zhang Y, Lou Y, Lu G, Guo Y. Effect of original activated carbon support and the presence of NOx on CO oxidation over supported Wacker-Type catalysts. Fuel. 2012;96:440–445. doi: 10.1016/j.fuel.2011.12.005
  • Descorme C, Madier Y, Duprez D. Infrared study of oxygen adsorption and activation on cerium–zirconium mixed oxides. J Catal. 2000;196:167–173. doi: 10.1006/jcat.2000.3023
  • Matsumoto S. Recent advances in automobile exhaust catalysts. Catal Today. 2004;90:183–190. doi: 10.1016/j.cattod.2004.04.048
  • Hoffmann J, Mesusel I, Hartmann J, Libuda J, Freund HJ. Reaction kinetics on heterogeneous model catalysts: the CO oxidation on alumina-supported Pd particles. J Catal. 2001;204:378–392. doi: 10.1006/jcat.2001.3374
  • Shen Y, Lu G, Guo Y, Wang Y, Guo Y, Gong X. Study on the catalytic reaction mechanism of low temperature oxidation of CO over Pd‒Cu‒Cljx/Al2O3 catalyst. Catal Today. 2011;175:558–567. doi: 10.1016/j.cattod.2011.03.042
  • Qiao B, Liu L, Zhang J, Deng Y. Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations: from gold to palladium. J Catal. 2009;261: 241–244. doi: 10.1016/j.jcat.2008.11.012
  • Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Single-atom catalysts of CO oxidation using Pt1/FeOjx. Nature Chem. 2011;3:634–641. doi: 10.1038/nchem.1095
  • Kugai J, Miller JT, Guo N, Song C. Oxygen-enhanced water gas shift on ceria-supported Pd‒Cu and Pt‒Cu bimetallic catalysts. J Catal. 2011;277:46–43. doi: 10.1016/j.jcat.2010.10.014
  • Wang W, Wang S, Ma X, Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev. 2011;40:3703–3727. doi: 10.1039/c1cs15008a
  • Park SJ, Bae I, Nam IS, Cho BK, Jung SM, Lee JH. Oxidation of formaldehyde over Pd/Beta catalyst. Chem Eng J. 2012;195–196:392–402. doi: 10.1016/j.cej.2012.04.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.