296
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Immobilization of chromate in hyperalkaline waste streams by green rusts and zero-valent iron

, , &
Pages 508-513 | Received 26 Apr 2013, Accepted 08 Aug 2013, Published online: 30 Sep 2013

References

  • Cao L, Zhang W. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. J Hazard Mater. 2006;B132:213–219. doi: 10.1016/j.jhazmat.2005.09.008
  • Ghandi MR, Viswanathan N, Meenakshi S. Synthesis and characterization of a few amino-functionalized copolymeric resins and their environmental applications. Ind Eng Chem Res. 2012;51:5677–5684. doi: 10.1021/ie3000503
  • Zachara JM, Ainsworth CC, Brown GE, Catalano JG, McKinley JP, Qafoku O, Smith SC, Szecsody JE, Traina SJ, Warner JA. Chromium speciation and mobility in a high level nuclear waste vadose zone plume. Geochim Cosmochim Acta. 2004;68:13–30. doi: 10.1016/S0016-7037(03)00417-4
  • Gregson CR, Goddard DT, Sarsfield MJ, Taylor RJ. Combined electron microscopy and vibrational spectroscopy study of corroded Magnox sludge from a legacy spent nuclear fuel storage pond. J Nucl Mater. 2011;412:145–156. doi: 10.1016/j.jnucmat.2011.02.046
  • Savage D. A review of analogues of alkaline alteration with regard to long-term barrier performance. Mineral Mag. 2011;75(4):2401–2418. doi: 10.1180/minmag.2011.075.4.2401
  • Geelhoed JS, Meeussen JCL, Hillier S, Lumsdon DG, Thomas RP, Farmer JG, Paterson E. Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue. Geochim Cosmochim Acta. 2002;66: 3927–3942. doi: 10.1016/S0016-7037(02)00977-8
  • Stewart DI, Burke IT, Mortimer RJG. Stimulation of microbially mediated chromate reduction in alkaline soil-water systems. Geomicrobiol J. 2007;24:655–669. doi: 10.1080/01490450701758221
  • Geelhoed JS, Meeussen JCL, Roe MJ, Hillier S, Thomas RP, Farmer JG, Paterson E. Chromium remediation or release? Effect of iron(II) sulfate addition on chromium leaching from columns of chromite ore processing residue. Environ Sci Technol. 2003;37:3206–3213. doi: 10.1021/es0264798
  • Whittleston RA, Stewart DI, Mortimer RJG, Tilt ZC, Brown AP, Geraki K, Burke IT. Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue. J Hazard Mater. 2011;194:15–23. doi: 10.1016/j.jhazmat.2011.07.067
  • Farmer JG, Thomas RP, Graham MC, Geelhoed JS, Lumsdon DG, Paterson E. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites. J Environ Monit. 2002;4:235–243. doi: 10.1039/b108681m
  • Fleury B, Frommer J, Eggenberger U, Mader U, Nachtegaal M, Kretzschmar R. Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environ Sci Technol. 2009;43: 6786–6792. doi: 10.1021/es803526g
  • Farrell J. Removal of hexavalent chromium from groundwater using zero-valent iron media. In: Lo IMC, Surampalli RY, Lai KCK, editors. Zero-valent iron reactive materials for hazardous waste and inorganic removal. Reston, VA: American Society of Civil Engineers; 2007;61–76.
  • Alowitz MJ, Scherer MM. Kinetics of nitrate, nitrite and Cr(VI) reduction by iron metal. Environ Sci Technol. 2002;36:299–306. doi: 10.1021/es011000h
  • Christiansen BC, Balic-Zunic T, Petit PO, Frandsen C, Morup S, Geckeis H, Katerinopoulou A, Stipp SLS. Composition and structure of an iron-bearing, layered double hydroxide (LDH) – green rust sodium sulphate. Geochim Cosmochim Acta. 2009;73:3579–3592. doi: 10.1016/j.gca.2009.03.032
  • Chaves LHG. The role of green rust in the environment: a review. Revista Brasileira de Engenharia Agricola e Ambiental. 2005;9:284–288. doi: 10.1590/S1415-43662005000200021
  • Williams AGB, Scherer MM. Kinetics of Cr(VI) reduction by carbonate green rust. Environ Sci Technol. 2001; 35:3488–3494. doi: 10.1021/es010579g
  • Bond DI, Fendorf S. Kinetics and structural constraints of chromate reduction by green rusts. Environ Sci Technol. 2003;37:2750–2757. doi: 10.1021/es026341p
  • Legrand L, El Figuigui A, Mercier F, Chausse A. Reduction of aqueous chromate by Fe(II)/Fe(III) carbonate green rust: kinetic and mechanistic studies. Environ Sci Technol. 2004;38:4587–4595. doi: 10.1021/es035447x
  • O'Loughlin EJ, Kelly SD, Cook RE, Csencsits R, Kemner KM. Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles. Environ Sci Technol. 2003;37: 721–727. doi: 10.1021/es0208409
  • Myneni SCB, Tokunaga TK, Brown GE. Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science. 1997;278:1106–1109. doi: 10.1126/science.278.5340.1106
  • Skovbjerg LL, Stipp SLS, Utsunomiya S, Ewing RC. The mechanisms of reduction of hexavalent{\newpage} chromium by green rust sodium sulphate: formation of Cr-goethite. Geochim Cosmochim Acta. 2006;70:3582–3592. doi: 10.1016/j.gca.2006.02.017
  • Ahmed IAM, Benning LG, Kakonyi G, Sumoondur AD, Terrill NJ, Shaw S. Formation of green rust sulfate: a combined in situ time-resolved X-ray scattering and electrochemical study. Langmuir. 2010;26:6593–6603. doi: 10.1021/la903935j
  • Ahmed IAM, Shaw S, Benning LG. Formation of hydroxysulphate and hydroxycarbonate green rusts in the presence of zinc using time-resolved in situ small and wide angle X-ray scattering. Mineral Mag. 2008;72:159–162. doi: 10.1180/minmag.2008.072.1.159
  • Method 7196A Chromium. Hexavalent (Colorimetric). Washington, DC: U.S. Environmental Protection Agency; 1992.
  • Johnson TL, Scherer MM, Tratnyek PG. Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol. 1996;30:2634–2640. doi: 10.1021/es9600901
  • Wander MCF, Rosso KM, Schoonen MAA. Structure and charge hopping dynamics in green rust. J Phys Chem C. 2007;111:11414–11423. doi: 10.1021/jp072762n
  • Sharma YC, Srivastava V, Singh VK, Kaul SN, Weng CH. Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol. 2009;30:583–609. doi: 10.1080/09593330902838080
  • Domenico PA, Schwartz FW. Physical and chemical hydrogeology. 2nd ed. New York: Wiley; 1998.
  • Furukawa Y, Kim J, Watkins J, Wilkin RT. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ Sci Technol. 2002;36:5469–5475. doi: 10.1021/es025533h

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.