360
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Cr(VI) and azo dye removal using a hollow-fibre membrane system functionalized with a biogenic Pd-magnetite catalyst

, , , , &
Pages 1046-1054 | Received 30 Jul 2013, Accepted 21 Oct 2013, Published online: 21 Nov 2013

References

  • Owlad M, Aroua M, Daud W, Baroutian S. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut. 2009;200:59–77. doi: 10.1007/s11270-008-9893-7
  • Jung Y, Choi J, Lee W. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium. Chemosphere. 2007;68:1968–1975. doi: 10.1016/j.chemosphere.2007.02.028
  • Meriç S, Kaptan D, Ölmez T. Color and COD removal from wastewater containing Reactive Black 5 using Fenton's oxidation process. Chemosphere. 2004;54:435–441. doi: 10.1016/j.chemosphere.2003.08.010
  • Stoltz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbial Biotechnol. 2001;56:69–80. doi: 10.1007/s002530100686
  • Wielinga B, Mizuba MM, Hansel CM, Fendorf S. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ Sci Technol. 2001;35:522–527. doi: 10.1021/es001457b
  • Eary LE, Rai D. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ Sci Technol. 1988;22:972–977. doi: 10.1021/es00173a018
  • McBride MB. Environmental chemistry of soils. New York: Oxford University Press; 1994.
  • Fendorf SE. Surface reactions of chromium in soils and waters. Geoderma. 1995;67:55–71. doi: 10.1016/0016-7061(94)00062-F
  • Cohen MD, Kargacin B, Klein CB, Costa M. Mechanisms of chromium carcinogenicity and toxicity. Crit Rev Toxicol. 1993;23:255–281. doi: 10.3109/10408449309105012
  • Abassi SA, Soni R. Teratogenic effects of chromium (VI) in the environment as evidenced by the impact of larvae of amphibian Rana tigrina: implications in the environmental management of chromium. Int Environ J Stud. 1984;23: 131–138. doi: 10.1080/00207238408710146
  • Bonatti S, Meini M, Abbondandolo A. Genetic effects of potassium dichromate in Schizosaccharomyces pombe. Mutat Res. 1976;38:147–150. doi: 10.1016/0165-1161(76)90069-8
  • James BR, Petura JC, Vitale RJ, Mussoline GR. Oxidation–reduction chemistry of chromium: relevance to the regulation and remediation of chromate-contaminated soils. In: ProctorD, FinleyB, HarrisM, PaustenbachD, RabbeD, editors. Chromium in soil: perspectives in chemistry, health, and environmental regulation. Boca Raton: Lewis Publishers; 1997. p. 561–568.
  • Lytle CM, Lytle FW, Yang N, Qian J-H, Hansen D, Zayed A, Terry N. Reduction of Cr(VI) to Cr(III) by wetland plants:? potential for in situ heavy metal detoxification. Environ Sci Technol. 1998;32:3087–3093. doi: 10.1021/es980089x
  • Anderson RA, Bryden NA, Polansky MM. Lack of toxicity of chromium chloride and chromium picolinate in rats. J Am Coll Nutr. 1997;16:273–279. doi: 10.1080/07315724.1997.10718685
  • Malaviya P, Singh A. Physicochemical technologies for remediation of chromium-containing waters and wastewaters. Crit Rev Environ Sci Technol. 2011;41:1111–1172. doi: 10.1080/10643380903392817
  • Gupta VK, Agarwal S, Saleh TA. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res. 2011;45:2207–2212. doi: 10.1016/j.watres.2011.01.012
  • Lalvani SB, Wiltowski TS, Murphy D, Lalvani LS. Metal removal from process water by lignin. Environ Technol. 1997;18:1163–1168. doi: 10.1080/09593331808616636
  • Delgado-Balderas R, Hinojosa-Reyes L, Guzman-Mar JL, Garza-Gonzalez MT, Lopez-Chuken UJ, Hernandez-Ramirez A. Photocatalytic reduction of Cr(VI) from agricultural soil column leachates using zinc oxide under UV light irradiation. Environ Technol. 2012;33:2673–2680. doi: 10.1080/09593330.2012.676070
  • Zhou LX, Fang D, Wang SM, Wong JWC, Wang DZ. Bioleaching of Cr from tannery sludge: the effects of initial acid addition and recycling of acidified bioleached sludge. Environ Technol. 2005;26:277–284. doi: 10.1080/09593332608618558
  • Fuller SJ, Stewart DI, Burke IT. Chromate reduction in highly alkaline groundwater by zerovalent iron: implications for its use in a permeable reactive barrier. Ind Eng Chem Res. 2013;52:4704–4714. doi: 10.1021/ie302914b
  • Cantrell KJ, Kaplan DI, Wietsma TW. Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater. 1995;42:201–212. doi: 10.1016/0304-3894(95)00016-N
  • Gupta VK, Pathania D, Sharma S, Singh P. Preparation of bio-based porous carbon by microwave assisted phosphoric acid activation and its use for adsorption of Cr(VI). J Colloid Interf Sci. 2013;401:125–132. doi: 10.1016/j.jcis.2013.03.020
  • Tang SCN, Lo IMC. Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 2013;47:2613–2632. doi: 10.1016/j.watres.2013.02.039
  • Chowdhury SR, Yanful EK. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J Environ Manage. 2010;91: 2238–2247. doi: 10.1016/j.jenvman.2010.06.003
  • Figueira P, Lopes CB, Daniel-da-Silva AL, Pereira E, Duarte AC, Trindade T. Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters. Water Res. 2011;45:5773–5784. doi: 10.1016/j.watres.2011.08.057
  • Wang Q, Guan Y, Ren X, Yang M, Liu X. Removal of low concentration Cr(VI) from aqueous solution by magnetic-fluids fixed bed using the high gradient magnetic separation. J Colloid Interf Sci. 2012;374:325–330. doi: 10.1016/j.jcis.2012.02.001
  • He YT, Traina SJ. Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: the role of passivation. Environ Sci Technol. 2005;39:4499–4504. doi: 10.1021/es0483692
  • Wu Y, Zhang J, Tong Y, Xu X. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles. J Hazard Mater. 2009;172:1640–1645. doi: 10.1016/j.jhazmat.2009.08.045
  • Wang KY, Chung TS. Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate. J Memb Sci. 2006;281:307–315. doi: 10.1016/j.memsci.2006.03.045
  • Alguacil FJ, Alonso M, Lopez FA, Lopez-Delgado A, Padilla I. Dispersion-free solvent extraction of Cr(VI) from acidic solutions using hollow fiber contactor. Environ Sci Technol. 2009;43:7718–7722. doi: 10.1021/es9012273
  • Liu J, Zhang W, Ren Z, Ma J. The separation and concentration of Cr(VI) from acidic dilute solution using hollow fiber renewal liquid membrane. Ind Eng Chem Res. 2009;48:4500–4506. doi: 10.1021/ie8017669
  • Robinson T, Chandran B, Nigam P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res. 2002;36:2824–2830. doi: 10.1016/S0043-1354(01)00521-8
  • Swamy J, Ramsay JA. The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Microb Technol. 1999;24:130–137. doi: 10.1016/S0141-0229(98)00105-7
  • Aksu Z, Tezer S. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem. 2005;40: 1347–1361. doi: 10.1016/j.procbio.2004.06.007
  • Gouvecirca CAK, Wypych F, Moraes SG, Durán N, Nagata N, Peralta-Zamora P. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere. 2000;40:433–440. doi: 10.1016/S0045-6535(99)00313-6
  • Pearce CI, Christie R, Boothman C, Von Canstein H, Guthrie JT, Lloyd JR. Reactive azo dye reduction by Shewanella strain J18 143. Biotechnol Bioeng. 2006;95:692–703. doi: 10.1002/bit.21021
  • Van der Zee FP, Cervantes FJ. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv. 2009;27:256–277. doi: 10.1016/j.biotechadv.2009.01.004
  • Nordstrom F, Terrazas E, Welander U. Decolorization of a mixture of textile dyes using Bjerkandera sp BOL-13. Environ Technol. 2008;29:921–929. doi: 10.1080/09593330802131628
  • Wang W, Zhou MH, Mao QO, Yue JJ, Wang X. Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst. Catal Commun. 2010;11:937–941. doi: 10.1016/j.catcom.2010.04.004
  • Iglesias O, Fernandez de Dios MA, Rosales E, Pazos M, Sanroman MA. Optimisation of decolourisation and degradation of reactive black 5 dye under electro-Fenton process using Fe alginate gel beads. Environ Sci Pollut Res. 2013;20:2172–2183. doi: 10.1007/s11356-012-1035-5
  • Rosales E, Pazos M, Sanroman MA. Advances in the electro-Fenton process for remediation of recalcitrant organic compounds. Chem Eng Technol. 2012;35:609–617. doi: 10.1002/ceat.201100321
  • Nam S, Tratnyek PG. Reduction of azo dyes with zero-valent iron. Water Res. 2000;34:1837–1845. doi: 10.1016/S0043-1354(99)00331-0
  • McCullagh C, Skillen N, Adams M, Robertson PKJ. Photocatalytic reactors for environmental remediation: a review. J Chem Technol Biotechnol. 2011;86:1002–1017. doi: 10.1002/jctb.2650
  • Tanaka K, Padermpole K, Hisanaga T. Photocatalytic degradation of commercial azo dyes. Water Res. 2000;34: 327–333. doi: 10.1016/S0043-1354(99)00093-7
  • Aksu Z. Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 2005;40:997–1026. doi: 10.1016/j.procbio.2004.04.008
  • Freyria FS, Bonelli B, Sethi R, Armandi M, Belluso E, Garrone E. Reactions of acid orange 7 with iron nanoparticles in aqueous solutions. J Phys Chem C. 2011;115: 24143–24152. doi: 10.1021/jp204762u
  • Flores RG, Floriani Andersen SL, Komay Maia LK, Jose HJ, Peralta Muniz Moreira RdF. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst. J Environ Managem. 2012;111:53–60. doi: 10.1016/j.jenvman.2012.06.017
  • Zhong L-S, Hu J-S, Liang H-P, Cao A-M, Song W-G, Wan L-J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater. 2006;18:2426–2431. doi: 10.1002/adma.200600504
  • Pattrick RAD, Coker VS, Pearce CI, Telling ND, van der Laan G, Lloyd JR. Extracellular bacterial production of doped magnetite nanoparticles, Nanoscience: Volume 1: Nanostructures through chemistry. Cambridge: The Royal Society of Chemistry; 2013. p. 102–115.
  • Cutting R, Coker VS, Telling ND, Kimber RL, Pearce CI, Ellis BL, Lawson RS, van der Laan G, Pattrick RAD, Vaughan DJ, Arenholz E, Lloyd JR. Optimizing Cr(VI) and Tc(VII) remediation through nanoscale biomineral engineering. Environ Sci Technol. 2010;44:2577–2584. doi: 10.1021/es902119u
  • Crean DE, Coker VS, van der Laan G, Lloyd JR. Engineering biogenic magnetite for sustained Cr(VI) remediation in flow-through systems. Environ Sci Technol. 2012;46:3352–3359. doi: 10.1021/es2037146
  • Hyeon T. Chemical synthesis of magnetic nanoparticles. Chem Commun. 2003;8:927–934. doi: 10.1039/b207789b
  • Lloyd JR. Microbial reduction of metals and radionuclides. FEMS Microbiol Rev. 2003;27: 411–425. doi: 10.1016/S0168-6445(03)00044-5
  • Byrne JM, Telling ND, Coker VS, Pattrick RAD, van der Laan G, Arenholz E, Tuna F, Lloyd JR. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens. Nanotechnology. 2011;22:455709. doi: 10.1088/0957-4484/22/45/455709
  • Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE. Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology. 2010;156:2630–2640. doi: 10.1099/mic.0.036681-0
  • Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts JP. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ Sci Technol. 2010;44:7635–7640. doi: 10.1021/es101559r
  • Omole MA, K'Owino IO, Sadik OA. Palladium nanoparticles for catalytic reduction of Cr(VI) using formic acid. Appl Catal B. 2007;76:158–167. doi: 10.1016/j.apcatb.2007.05.018
  • Coker VS, Bennett JA, Telling ND, Henkel T, Charnock JM, van der Laan G, Pattrick RAD, Pearce CI, Cutting RS, Shannon IJ, Wood J, Arenholz E, Lyon IC, Lloyd JR. Microbial engineering of nano-heterostructures; biological synthesis of a magnetically-recoverable palladium nanocatalyst. ACS Nano. 2010;4:2577–2584. doi: 10.1021/nn9017944
  • Lloyd JR, Leang C, Hodges Myerson AL, Coppi MV, Cuifo S, Methe B, Sandler SJ, Lovley DR. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J. 2003;369:153–161. doi: 10.1042/BJ20020597
  • Stookey LL. Ferrozine – a new spectrophotometric reagent for iron. Anal Chem. 1970;42:779–781. doi: 10.1021/ac60289a016
  • Lovley DR, Phillips EJP. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river. Appl Environ Microbiol. 1986;52:751–757.
  • Skougstad MW, Fishman MJ, Friedman LC, Erdman DE, Duncan SS. Method for determination of inorganic substances in water and fluvial sediments. Reston: US Geological Survey, 1979.
  • Shirley DA. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B. 1972;5:4709–4714. doi: 10.1103/PhysRevB.5.4709
  • Reemtsma T, Jekel M. Organic pollutants in the water cycle: properties, occurrence, analysis and environmental relevance of polar compounds. Weinheim: Wiley-VCH; 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.