767
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Harvesting Chlorella vulgaris by natural increase in pH: effect of medium composition

, , , &
Pages 1378-1388 | Received 03 Oct 2013, Accepted 18 Nov 2013, Published online: 08 Jan 2014

References

  • Olaizola M. Commercial development of microalgal biotechnology: from test tube to the marketplace. Biomol Eng. 2003;20:459–466. doi: 10.1016/S1389-0344(03)00076-5
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306. doi: 10.1016/j.biotechadv.2007.02.001
  • Brennan L, Owende P. Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14:557–577. doi: 10.1016/j.rser.2009.10.009
  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ. Placing microalgae on the biofuel priority list: a review of the technological challenges. J R Soc Interface. 2010;7:703–726. doi: 10.1098/rsif.2009.0322
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Ener Rev. 2010;14:217–232. doi: 10.1016/j.rser.2009.07.020
  • Gudin C, Therpenier C. Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process. 1986;6:73–110.
  • Molina Grima E, Belarbi E-H, Acién Fernández FG, Robles Medina A, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20:491–515. doi: 10.1016/S0734-9750(02)00050-2
  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. Dewatering of microalgal cultures: a major bottleneck to algal-based fuels. J Renew Sust Ener. 2010;2, 012701: 1–15.
  • Golueke CG, Oswald WJ. Harvesting and processing sewage grown planktonic algae. J Water Pollut Control Fed. 1965;37(4):471–498.
  • Divakaran R, Pillai VNS. Flocculation of algae using chitosan. J Appl Phycol. 2002;14:419–422. doi: 10.1023/A:1022137023257
  • Vandamme D, Foubert I, Meesschaert B, Muylaert K. Flocculation of microalgae using cationic starch. J Appl Phycol. 2010;22:525–530. doi: 10.1007/s10811-009-9488-8
  • Tenney MW, Verhoff FH. Chemical and autoflocculation of microorganisms in biological wastewater treatment. Biotechnol Bioeng. 1973;XV:1045–1073. doi: 10.1002/bit.260150605
  • Lee AK, Lewis DM, Ashman PJ. Microbial flocculation, a potentially low-cost, harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol. 2009;21:559–567. doi: 10.1007/s10811-008-9391-8
  • Duraiarasan S, Mani V. Influence of bioflocculation parameters on harvesting Chlorella salina and its optimization using response surface methodology. J Environ Chem Eng. 2013;1(4):1051–1056. doi: 10.1016/j.jece.2013.08.016
  • Dassey AJ, Theegala CS. Reducing electrocoagulation harvesting costs for practical microalgal biodiesel production. Environ Technol. 2013. doi: 10.1080/09593330.2013.842602
  • Poelman E, De Pauw N, Jeurissen B. Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recy. 1997;19:1–10. doi: 10.1016/S0921-3449(96)01156-1
  • Phoochinda W, White DA, Briscoe BJ. An algal removal using a combination of flocculation and flotation processes. Environ Technol. 2004;24:1385–1395. doi: 10.1080/09593332508618466
  • Dupré C, Guary JC, Grizeau D. Culture of an autoflocculant microalga in a vertical tubular photobioreactor for phycoerythrin production. Biotechnol Tech. 1995;9:185–190. doi: 10.1007/BF00157076
  • Spilling K, Seppälä J, Tamminen T. Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. J Appl Phycol. 2011;23(6):959–966. doi: 10.1007/s10811-010-9616-5
  • Sukenik A, Shelef G. Algal autoflocculation – verification and proposed mechanisms. Biotechnol Bioeng. 1984;XXVI:142–147. doi: 10.1002/bit.260260206
  • Leentvar J, Rebhun ME. Effects of magnesium and calcium precipitation on coagulation-flocculation with lime. Water Res. 1982;16:655–662. doi: 10.1016/0043-1354(82)90087-2
  • Ayoub GM, Lee S-I, Koopman B. Seawater induced algal flocculation. Water Res. 1986;20:1265–1271. doi: 10.1016/0043-1354(86)90157-0
  • Semerjian L, Ayoub GM. High-pH–magnesium coagulation–flocculation in wastewater treatment. Adv Environ Res. 2003;7:389–403. doi: 10.1016/S1093-0191(02)00009-6
  • Schlesinger A, Eisenstadt D, Bar-Gil A, Carmely H, Einbinder S, Gressel J. Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnol Adv. 2012;30: 1023–1030. doi: 10.1016/j.biotechadv.2012.01.011
  • Smith BT, Davis RH. Sedimentation of algae flocculated using naturally-available, magnesium-based flocculants. Algal Res. 2012;1:32–39. doi: 10.1016/j.algal.2011.12.002
  • Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K. Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol. 2012;105: 114–119. doi: 10.1016/j.biortech.2011.11.105
  • Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A. Evaluation of flocculation induced by Ph increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol. 2012;110:496–502. doi: 10.1016/j.biortech.2012.01.101
  • Besson A, Guiraud P. High-pH-induced flocculation–flotation of the hypersaline microalga Dunaliella salina. Bioresour Technol. 2013;147:464–470. doi: 10.1016/j.biortech.2013.08.053
  • Shi X-M, Chen F, Yuan J-P, Chan H. Heterotrophic production of lutein by selected Chlorella strains. J Appl Phycol. 1997;9:445–450. doi: 10.1023/A:1007938215655
  • Pruvost J, Van Vooren G, Le Gouic B, Couzinet-Mossion A, Legrand J. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol. 2010;102:150–158. doi: 10.1016/j.biortech.2010.06.153
  • Beyerinck MW. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Botanische Zeitung. 1890;47:724–785.
  • Reisner GS, Gering RK, Thompson JF. The metabolism of nitrate and ammonia by Chlorella. Plant Physiol. 1960;35:48–52. doi: 10.1104/pp.35.1.48
  • Schuler JF, Diller VM, Kersten HJ. Preferential assimilation of ammonium ion by Chlorella vulgaris. Plant Physiol. 1952;28:299–303. doi: 10.1104/pp.28.2.299
  • Sueoka N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc Nat Acad Sci. 1960;46: 83–91. doi: 10.1073/pnas.46.1.83
  • Harris EH. The Chlamydomonas source book. Introduction to Chlamydomonas and its laboratory use. New York, NY: Academic Press Inc.; 2009.
  • Bischoff HW, Bold HC. Some soil algae from Enchanted Rock and related algal species. Phycol Stud. 1963; 4:1–95.
  • Hadj-Romdhane F, Jaouen P, Pruvost J, Van Vooren G, Bourseau P. Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresour Technol. 2012;123:366–374. doi: 10.1016/j.biortech.2012.07.085
  • Hadj-Romdhane F, Zheng X, Jaouen P, Pruvost J, Grizeau D, Croue JP, Bourseau P. The culture of Chlorella vulgaris in a recycled supernatant: effects on biomass production and medium quality. Bioresour Technol. 2013;132:285–292. doi: 10.1016/j.biortech.2013.01.025
  • Hutner SH, Provasoli L, Schatz A, Haskins CP. Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc Am Philosophical Soc 1950;94:152–170.
  • Ritchie R. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res. 2006;89:27–41. doi: 10.1007/s11120-006-9065-9
  • Hadjoudja S, Deluchat V, Baudu M. Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interf Sci. 2010;342:293–299. doi: 10.1016/j.jcis.2009.10.078
  • Baya DT, Effebi KR, Tangou TT, Keffala C, Vasel JL. Effect of hydroxyapatite, octacalcium phosphate and calcium phosphate on the auto-flocculation of the microalgae in a high-rate algal pond. Environ Technol. 2013;4(16):2407–2414. doi: 10.1080/09593330.2013.770563
  • Stumm W, O'Melia CR. Stoichiometry of coagulation. J Am Water Works Assoc. 1968;60(1968):514–539.
  • Duan J, Gregory J. Coagulation by hydrolysing metal salts. Adv Colloid Interfac Sci. 2003;100–102:475–502. doi: 10.1016/S0001-8686(02)00067-2
  • Goldman JC, Brewer PG. Effect of nitrogen source and growth rate on phytoplankton-mediated changes in alkalinity. Limnol Oceanogr. 1980;25:352–357. doi: 10.4319/lo.1980.25.2.0352
  • Abeliovich A, Azov Y. Toxicity of ammonia to algae in Sewage oxidation ponds. Appl Environ Microb. 1976;31(6): 801–806.
  • Gustafsson JP. Visual MINTEQ ver. 3.0 website; 2011.
  • Alyabyev AJ, Loseva NL, Gordon LK, Andreyeva IN, Rachimova GG, Tribunskih VI, Ponomareva AA, Kemp RB. The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells. Thermochim Acta. 2007;458:65–70. doi: 10.1016/j.tca.2007.03.003
  • Cacace MG, Landau EM, Ramsden JJ. The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys. 1997;3:241–277. doi: 10.1017/S0033583597003363
  • Cao X, Harris WG, Josan MS, Nair VD. Inhibition of calcium phosphate precipitation under environmentally-relevant conditions. Sci Total Environ. 2007;383:205–215. doi: 10.1016/j.scitotenv.2007.05.012
  • Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013;31:233–239. doi: 10.1016/j.tibtech.2012.12.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.