273
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Co-composting of invasive Acacia longifolia with pine bark for horticultural use

, , &
Pages 1632-1642 | Received 13 May 2014, Accepted 08 Aug 2014, Published online: 30 Jan 2015

References

  • Bakry M, Lamhamedi MS, Caron J, Bernier PY, El Abidine AZ, Stowe DC, Margolis HA. Changes in the physical properties of two Acacia compost-based growing media and their effects on carob (Ceratonia siliqua L.) seedling development. New For. 2013;44:827–847. doi: 10.1007/s11056-013-9368-6
  • Sankar Ganesh P, Gajalakshmi S, Abbasi SA. Vermicomposting of the leaf litter of Acacia (Acacia auriculiformis): possible roles of reactor geometry, polyphenols, and lignin. Bioresour Technol. 2009;100:1819–1827. doi: 10.1016/j.biortech.2008.09.051
  • Morais MC, Panuccio MR, Muscolo A, Freitas H. Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes. Plant Physiol Biochem. 2012;55:60–65. doi: 10.1016/j.plaphy.2012.03.013
  • Brito LM, Mourão I, Coutinho J, Smith SR. Composting for management and resource recovery of invasive Acacia species. Waste Manage Res. 2013;31:1125–1132. doi: 10.1177/0734242X13502384
  • Brito LM, Mourão I, Coutinho J, Smith SR. Physicochemical dynamics of composting screw pressed cattle slurry amended with Italian ryegrass straw or gorse bulking agents. Compost Sci Util. 2010;18:119–126. doi: 10.1080/1065657X.2010.10736944
  • Bustamante MA, Alburquerque JA, Restrepo AP, de la Fuente C, Paredes C, Moral R, Bernal MP. Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioenerg. 2012;43:26–35. doi: 10.1016/j.biombioe.2012.04.010
  • Hachicha S, Cegarra J, Sellami F, Hachicha R, Drira N, Medhioub K, Ammar E. Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. J Hazard Mater. 2009;161:1131–1139. doi: 10.1016/j.jhazmat.2008.04.066
  • Watteau F, Geneviève V. Characterization of organic matter microstructure dynamics during co-composting of sewage sludge, barks and green waste. Bioresour Technol. 2011;102:9313–9317. doi: 10.1016/j.biortech.2011.07.022
  • Bakry M, Lamhamedi MS, Caron J, Margolis H, El Abidine AZ, Bellaka M, Stowe DC. Are composts from shredded leafy branches of fast-growing forest species suitable as nursery growing media in arid regions? New For. 2012;43:267–286. doi: 10.1007/s11056-011-9280-x
  • Abad M, Noguera P, Bures S. National inventory of organic wastes for use as Growing media for ornamental potted plant production: case study in Spain. Bioresour Technol. 2001;77:197–200. doi: 10.1016/S0960-8524(00)00152-8
  • Fradinho DM, Pascoal Neto C, Evtuguin D, Jorge FC, Irle MA, Gil MH, Pedrosa de Jesus J. Chemical characterisation of bark and of alkaline bark extracts from maritime pine grown in Portugal. Ind Crops Prod. 2002;16:23–32. doi: 10.1016/S0926-6690(02)00004-3
  • Vandecasteele B, Willekens K, Zwertvaegher A, Degrande L, Tack FMG, Du Laing G. Effect of composting on the Cd, Zn and Mn content and fractionation in feedstock mixtures with wood chips from a short-rotation coppice and bark. Waste Manage. 2013;33:2195–2203. doi: 10.1016/j.wasman.2013.06.014
  • Feng S, Cheng S, Yuan Z Leitch M, Xu C. Valorization of bark for chemicals and materials: a review. Renewable Sustainable Energy Rev. 2013;26:560–578. doi: 10.1016/j.rser.2013.06.024
  • Cunha-Queda AC, Ribeiro HM, Ramos A, Cabral F. Study of biochemical and microbiological parameters during composting of pine and eucalyptus bark. Bioresour Technol. 2007;98:3213–3220. doi: 10.1016/j.biortech.2006.07.006
  • Handreck KA, Black ND. Growing media for ornamental plants and turf. Australia: UNSW Press Sidney; 2002.
  • Baggie I, Rowell DL, Robinson JS, Warren GP. Decomposition and phosphorus release from organic residues as affected by residue quality and added inorganic phosphorus. Agrofor Syst. 2004;63:125–131. doi: 10.1007/s10457-004-5131-5
  • Tomar JMS, Das A, Arunachalam A. Crop response and soil fertility as influenced by green leaves of indigenous agroforestry tree species in a lowland rice system in northeast India. Agrofor Syst. 2013;87:193–201. doi: 10.1007/s10457-012-9535-3
  • Bernal MP, Alburquerque JA, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol. 2009;100:5444–5453. doi: 10.1016/j.biortech.2008.11.027
  • Füleky G. Composting to recycle biowaste. In: Lichtfouse E, editor. Sociology organic farming climate change and soil science. Dijon: Springer; 2010. p. 319–346.
  • CEN European Standards. Soil improvers and growing media. Brussels: European Committee for Standardization; 1999.
  • Houba VJG, Van der Lee JJ, Novozamsky I. Soil analysis procedures – other procedures part 5B. The Netherlands: Wageningen Agricultural University; 1995.
  • Ogunwande GA, Osunade JA, Adekalu KO, Ogunjimi LAO. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency. Bioresour Technol. 2008;99:7495–7503. doi: 10.1016/j.biortech.2008.02.020
  • Tang JC, Shibata A, Zhou Q, Katayama A. Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. J Biosci Bioeng. 2007;104:321–328. doi: 10.1263/jbb.104.321
  • Paredes C, Roig A, Bernal MP, Sánchez-Monedero MA, Cegarra J. Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes. Biol Fertil Soils. 2000;20:222–227. doi: 10.1007/s003740000239
  • Serramiá N, Sánchez-Monederoa MA, Fernández-Hernández A, Civantos C, Roiga A. Contribution of the lignocellulosic fraction of two-phase olive-mill wastes to the degradation and humification of the organic matter during composting. Waste Manage. 2010;30:1939–1947. doi: 10.1016/j.wasman.2010.04.031
  • Molina JAE, Clapp CE, Larson WE. Potentially mineralizable nitrogen in soil: the simple exponential model does not apply for the first 12 weeks of incubation. Soil Sci Soc Am J. 1980;44:442–443. doi: 10.2136/sssaj1980.03615995004400020054x
  • Stentiford ET. Composting control principles and practice. In: DeBertoldi M, Sequi P, Lemmes B, Papi T, editors. The science of composting. London: Chapman and Hall; 1996. p. 49–59.
  • Wu N, Smith JE. Reducing pathogen and vector attraction for biosolids. Biocycle. 1999;40(11):59–61.
  • El Kader NA, Robin P, Paillat JM, Leterme P. Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting. Bioresour Technol. 2007;98:2619–2628. doi: 10.1016/j.biortech.2006.07.035
  • Petric I, Sestan A, Sestan I. Influence of initial moisture content on the composting of poultry manure with wheat straw. Biosyst Eng. 2009;104:125–134. doi: 10.1016/j.biosystemseng.2009.06.007
  • Cáceres R, Flotats X, Marfà O. Changes in the chemical and physicochemical properties of the solid fraction of cattle slurry during composting using different aeration strategies. Waste Manage. 2006;26:1081–1091. doi: 10.1016/j.wasman.2005.06.013
  • Brito LM. Lettuce (Lactuca sativa L) and cabbage (Brassica oleracea var Capitata) growth in soil mixed with municipal solid waste compost and paper mill sludge composted with bark. Acta Hort. 2001;563:131–137.
  • Amirjani MR. Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am J Plant Physiol. 2010;5:350–360. doi: 10.3923/ajpp.2010.350.360
  • Al-Shaharani TS, Shetta ND. Evaluation of growth nodulation and nitrogen fixation of two Acacia species under salt stress. World Appl Sci J. 2011;13:256–265.
  • Soumaré M, Demeyer A, Tack FMG, Verloo MG. Chemical characteristics of Malian and Belgian solid waste composts. Bioresour Technol. 2002;81:97–101. doi: 10.1016/S0960-8524(01)00125-0
  • Valentín L, Kluczek-Turpeinen B, Willför S, Hemming J, Hatakka A, Steffen K, Tuomela M. Scots pine (Pinus sylvestris) bark composition and degradation by fungi: potential substrate for bioremediation. Bioresour Technol. 2010;101:2203–2209. doi: 10.1016/j.biortech.2009.11.052
  • du Plessis CA, Strauss JM, Sebapalo EMT, Riedel KHJ. Empirical model for methane oxidation using a composted pine bark biofilter. Fuel. 2003;82:1359–1365. doi: 10.1016/S0016-2361(03)00040-1
  • Sánchez-Monedero MA, Roig A, Paredes C, Bernal MP. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, Ec and maturity of the composting mixtures. Bioresour Technol. 2001;78:301–308. doi: 10.1016/S0960-8524(01)00031-1
  • Fukumoto Y, Osada T, Hanajima D, Haga K. Patterns and quantities of NH3, N2O and CH4 emissions during swine manure composting without forced aeration—effect of compost pile scale. Bioresour Technol. 2003;89:109–114. doi: 10.1016/S0960-8524(03)00060-9
  • Raviv M, Medina S, Krasnovsky A, Ziadna H. Organic matter and nitrogen conservation in manure compost for organic agriculture. Compos Sci Util. 2004;12:6–10. doi: 10.1080/1065657X.2004.10702151
  • Brito LM, Coutinho J, Smith SR. Methods to improve the composting process of the solid fraction of dairy cattle slurry. Bioresour Technol. 2008;99:8955–8960. doi: 10.1016/j.biortech.2008.05.005
  • Parkinson R, Gibbs P, Burschett S, Misselbrock T. Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Bioresour Technol. 2004;91:171–178. doi: 10.1016/S0960-8524(03)00174-3
  • Coûteaux MM, Bottner P, Berg B. Litter decomposition, climate and litter quality. Trends Ecol Evol. 1995;10:63–66. doi: 10.1016/S0169-5347(00)88978-8
  • Brito LM, Mourão I, Coutinho J, Smith SR. Simple technologies for on-farm composting of cattle slurry solid fraction. Waste Manage. 2012;32:1332–1340. doi: 10.1016/j.wasman.2012.03.013
  • Marschner H. Mineral nutrition of higher plants. San Diego: Academic Press; 1995.
  • White PJ, Broadley MR. Calcium in plants. Ann Bot. 2003;92:487–511. doi: 10.1093/aob/mcg164
  • de Bertoldi M, Civilini M. High rate composting with innovative process control. Compos Sci Util. 2006;14:290–295. doi: 10.1080/1065657X.2006.10702299
  • Larney FJ, Hao X. A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta, Canada. Bioresour Technol. 2007;98:3221–3227. doi: 10.1016/j.biortech.2006.07.005
  • Zucconi F, de Bertoldi M. Composts specifications for the production and characterization of composts from municipal solid waste. In: de Bertoldi M, Ferranti MP, L'Hermite P, Zucconi F, editors. Compost: quality and use. London: Elsevier Applied Science; 1987. p. 30–50.
  • Conghos MM, Aguirre ME, Santamaría RM. Sunflower hulls degradation by co-composting with different nitrogen sources. Environ Technol. 2006;27:969–978. doi: 10.1080/09593332708618711
  • Bikovens O, Dizhbite T, Telysheva V. Characterisation of humic substances formed during co-composting of grass and wood wastes with animal grease. Environ Technol. 2012;33:1427–1433. doi: 10.1080/09593330.2011.632652
  • CCQC (California Compost Quality Council). Compost maturity index. Nevada City: Technical Report; 2001.
  • Gao M, Liang F, Yu A, Li B, Yang L. Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere. 2010;78:614–619. doi: 10.1016/j.chemosphere.2009.10.056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.