156
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of pine bark on the biotransformation of trinitrotoluene and on the bacterial community structure in a batch experiment

, , , , , & show all
Pages 2456-2465 | Received 06 Feb 2014, Accepted 26 Mar 2014, Published online: 29 Apr 2014

References

  • Cocroft WD. First world war explosives manufacture: the British experience. In: MacLeod R, Johnson JA, editors. Frontline and factory: comparative perspectives on the chemical industry at war 1914–1924. Berlin: Springer; 2007. p. 31–46.
  • Oxley JC. The chemistry of explosives. In: Walters B, Zukas J, editors. Explosives effects and applications. New York: Springer; 1998. p. 137–172.
  • ATSDR. Toxicological Profile for 2,4,6-Trinitrotoluene, U.S. Agency for Toxic Substances and Disease Registry, 1995. Available from: http://www.atsdr.cdc.gov/toxprofiles/tp81.pdf
  • U.S. Department of Defense. Environmental Security Technology Certification Program. Mineralization of TNT, RDX and by-products in an anaerobic granular activated carbon-fluidized bed reactor, CP-0004, 2003.
  • Chen JP, Zou S, Pehkonen SO, Hung YT, Wang LK. Explosive waste treatment. In: Wang LK, Hung YT, Lo HH, Yapijakis C, editors. Handbook of industrial and hazardous waste treatment. 2nd ed. New York: CRC Press; 2004. p. 1113–1124.
  • Cervantes FJ. Environmental technologies to remove recalcitrant N-pollutants from wastewaters. In: Cervantes FJ, editor. Environmental technologies to treat nitrogen pollution principles and engineering. London: IWA Publishing; 2009. p. 140–199.
  • Marinovic V, Ristic M, Dostanic M. Dynamic adsorption of trinitrotoluene on granular activated carbon. J Hazard Mater. 2005;117:121–128. doi: 10.1016/j.jhazmat.2004.07.025
  • Nehrenheim E, Odlare M, Allard B. Retention of 2,4,6-trinitrotoluene and heavy metals from industrial waste water by using the low cost adsorbent pine bark in a batch experiment. Water Sci Technol. 2011;64:2052–2058. doi: 10.2166/wst.2011.603
  • Blazquez G, Martin-Lara MA, Dionisio-Ruiz E, Tenorio G, Calero M. Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark. J Ind Eng Chem. 2011;17:824–833. doi: 10.1016/j.jiec.2011.08.003
  • Nehrenheim E, Gustafsson JP. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments. Bioresour Technol. 2008;99:1571–1577. doi: 10.1016/j.biortech.2007.04.017
  • Antunes MSG, Pinto S, Braga FG, Esteves Silva JSG. Optimisation of bisphenol A removal from water using chemically modified pine bark and almond shell. J Chem Ecol. 2012;28:141–152. doi: 10.1080/02757540.2011.638629
  • Li Y, Chen B, Zhu L. Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pine bark. Bioresour Technol. 2010;101:7307–7313. doi: 10.1016/j.biortech.2010.04.088
  • Sousa S, Jimenez-Guerrero P, Ruiz A, Ratola N, Alves A. Organochlorine pesticides removal from wastewater by pine bark adsorption after activated sludge treatment. Environ Technol. 2011;32:673–683. doi: 10.1080/09593330.2010.510535
  • Lenke H, Warrelmann J, Daun G, Hund K, Sieglen U, Knackmuss H-J. Biological treatment of TNT-contaminated soil. 2. Biologically induced immobilization of the contaminants and full-scale application. Environ Sci Technol. 1998;32:1964–1971. doi: 10.1021/es970950t
  • Daun G, Lenke H, Reuss M, Knackmuss H-J. Biological treatment of TNT-contaminated soil. 1. Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ Sci Technol. 1998;32:1956–1963. doi: 10.1021/es970949u
  • Achtnich C, Lenke H. Stability of immobilized 2,4,6-trinitrotoluene metabolites in soil under long-term leaching conditions. Environ Toxicol Chem. 2001;20:280–283. doi: 10.1002/etc.5620200208
  • Nehrenheim E, Gustafsson JP. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments. Bioresour Technol. 2008;99:1571–1577. doi: 10.1016/j.biortech.2007.04.017
  • Sambrook J, Fritsch EF, Maniatis T. Molecular cloning a laboratory manual. 3rd ed. New York: Cold Spring Harbor, Laboratory Press; 2001.
  • Dorn E, Hellwig M, Reineke W, Knackmuss H-J. Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol. 1974;99:61–70. doi: 10.1007/BF00696222
  • Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD, MacPhee R, Reid G. Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PloS One. 2010;5:e15406. doi: 10.1371/journal.pone.0015406
  • Parameswaran P, Jalili R, Tao L, Shokralla S, Gharizadeh B, Ronaghi M, Fire AZ. A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res. 2007;35:e130. doi: 10.1093/nar/gkm760
  • Frank DN. BARCRAWL and BARTAB: software tools for the design and implementation of barcoded primers for highly multiplexed DNA sequencing. BMC Bioinformatics. 2009;10:362. doi: 10.1186/1471-2105-10-362
  • Tiirik K, Nõlvak H, Oopkaup K, Truu M, Preem J-K, Heinaru A, Truu J. Characterization of the bacterioplankton community and its antibiotic resistance genes in the Baltic Sea. Biotechnol Appl Biochem. 2014; 10.1002/bab.1144
  • Rodrigue S, Materna AC, Timberlake SC, Blackburn MC, Malmstrom RR, Alm EJ, Chisholm SW. Unlocking short read sequencing for metagenomics. PLoS One. 2010;5:e11840. doi: 10.1371/journal.pone.0011840
  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GC, Van Horn DJ, Weber CF. Introducing mothur: open-source platform-independent community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09
  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–7196. doi: 10.1093/nar/gkm864
  • Werner JJ, Koren O, Hugenholtz P, Desantis TZ, Walters W, Caporaso JG, Angenent LT, Knight R, Ley RE. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J. 2012a;6:94–103. doi: 10.1038/ismej.2011.82
  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–618. doi: 10.1038/ismej.2011.139
  • Hartmann M, Howes CG, Abarenkov K, Mohn WW, Nilsson RH. V-Xtractor: an open-source high-throughput software tool to identify and extract hypervariable regions of small subunit (16S/18S) ribosomal RNA gene sequences. J Microbiol Meth. 2010;83:250–253. doi: 10.1016/j.mimet.2010.08.008
  • Hao X, Jiang R, Chen T. Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics. 2011;27:611–618. doi: 10.1093/bioinformatics/btq725
  • Werner JJ, Zhou D, Caporaso JG, Knight R, Angenent LT. Comparison of Illumina paired-end and single-direction sequencing for microbial 16S rRNA gene amplicon surveys. ISME J. 2012b;6:1273–1276. doi: 10.1038/ismej.2011.186
  • McCormick NG, Feeherry FF, Levinson HS. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol. 1976;31:949–958.
  • Rieger PG, Knackmuss H-J. Basic knowledge and perspectives on biodegradatlion of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain J, editor. Biodegradation of nitroaromatic compounds. New York: Plenum; 1995a. p. 1–18.
  • Boopathy R, Manning J, Kulpa CS. Biotransformation of explosives by anaerobic consortia in liquid culture and in soil slurry. Int Biodeter Biodegr. 1998;41:67–74. doi: 10.1016/S0964-8305(98)80009-7
  • Bras IP, Lemos L, Alves A, Pereira MF. Sorption of pentachlorophenol on pine bark. Chemosphere. 2005;60:1095–1102. doi: 10.1016/j.chemosphere.2004.12.064
  • Al-Ashen S, Duvnjak Z. Sorption of cadmium and other heavy metals by pine bark. J Hazard Mater. 1997;56:35–51. doi: 10.1016/S0304-3894(97)00040-X
  • Nehrenheim E, Odlare M. Treatment of explosives contaminated water by using pine bark in a batch process – potentials and kinetics. Proceedings Crete 2010 second international conference of hazardous and industrial waste management. Chain, Greece; 2010.
  • Trois C, Coulon F, de Combret CP, Martins JMF, Oxarango L. Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: focus on the microbiology. J Hazard Mater. 2010;181:1163–1169. doi: 10.1016/j.jhazmat.2010.05.077
  • Frank R, Trois C, Coulon F. Bio-denitrification of high strength leachates using garden refuse and pine bark as a carbon source. Proceedings Sardinia 2011 thirteenth international waste management and landfill symposium. S. Margherita di Pula, Cagliari, Italy; 2011.
  • Rivera-Utrilla J, Bautista-Toledo I, Ferro-García MA, Moreno-Castilla C. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J Chem Technol Biotechnol. 2001;76:1209–1215. doi: 10.1002/jctb.506
  • Maloney SW, Adrian NR, Hickey RF, Heine RL. Anaerobic treatment of pinkwater in a fluidized bed reactor containing GAC. J Hazard Mater. 2002;92:77–88. doi: 10.1016/S0304-3894(01)00375-2
  • Zou L, Lu D, Liu Z. Pathways for degrading TNT by Thu-Z: a Pantoea sp. Strain. Appl Biochem Biotech. 2012;168:1976–1988. doi: 10.1007/s12010-012-9911-5
  • Kim J, Yu Y-K, Yan F, Bang J, You T, Lee SS. A new strain of bacteria degrading TNT and 2,4/2,6-DNT from explosives-contaminated soil. Atlas J Biol. 2012;2:116–124. doi: 10.5147/ajb.2012.0093
  • Esteve-Nuñez A, Ramos JL. Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ Sci Technol. 1998;32:3802–3808. doi: 10.1021/es9803308
  • Cho Y-S, Lee B-U, Oh K-H. Simultaneous degradation of nitroaromatic compounds TNT RDX atrazine and simazine by Pseudomonas putida HK-6 in bench-scale bioreactors. J Chem Technol Biotechnol. 2008;83:1211–1217. doi: 10.1002/jctb.1924
  • Ederer MM, Lewis TA, Crawford RL. 2,4,6-trinitrotoluene (TNT) transformation by Clostridia isolated from a munition-fed bioreactor: comparison with non-adapted bacteria. J Ind Microbiol Biotechnol. 1997;18:82–88. doi: 10.1038/sj.jim.2900257
  • Esteve-Nuñez A, Lucchesi G, Philipp B, Schink B, Ramos JL. Respiration of 2,4,6-trinitrotoluene by Pseudomonas strain JLR11. J Bacteriol. 2000;182:1352–1355. doi: 10.1128/JB.182.5.1352-1355.2000
  • Travis ER, Bruce NC, Rosser SJ. Short term exposure to elevated trinitrotoluene concentrations induced structural and functional changes in the soil bacterial community. Environ Pollut. 2008;153:432–439. doi: 10.1016/j.envpol.2007.08.006
  • Nõlvak H, Truu J, Limane B, Truu M, Cepurnieks G, Bartkevics V, Juhanson J, Muter O. Microbial community changes in TNT spiked soil bioremediation trial using biostimulation phytoremediation and bioaugmentation. J Environ Eng Landsc Manag. 2013; 10.3846/16486897.2012.721784
  • Sagi-Ben Moshe S, Ronen Z, Dahan O, Weisbrod N, Groisman L, Adar E, Nativ R. Sequential biodegradation of TNT, RDX and HMX in a mixture. Environ Pollut. 2009;157:2231–2238. doi: 10.1016/j.envpol.2009.04.012
  • Boopathy R. Anaerobic metabolism and bioremediation of explosives-contaminated soil. In: Singh A, Kuhad RC, Ward OP, editors. Advances in applied bioremediation 17. New York: Springer; 2009. p. 151–172.
  • Gadd GM. Mycotransformation of organic and inorganic substrates. Mycologist. 2004;18:60–70. doi: 10.1017/S0269915X04002022
  • Weber RWS, Ridderbusch DC, Anke H. 2,4,6-trinitrotoluene (TNT) tolerance and biotransformation potential of microfungi isolated from TNT-contaminated soil. Mycol Res. 2002;106:336–344. doi: 10.1017/S0953756202005609

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.