525
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Biofilm development in water distribution and drainage systems: dynamics and implications for hydraulic efficiency

, , , &
Pages 31-47 | Received 15 Oct 2013, Accepted 07 May 2014, Published online: 16 Jun 2014

References

  • Costerton JW, Lewandowski Z. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–745. doi: 10.1146/annurev.mi.49.100195.003431
  • Batté M, Appenzeller BMR, Grandjean D, Fass S, Gauthier V, Jorand F, Mathieu L, Boualam M, Saby S, Block JC. Biofilms in drinking water distribution systems. Rev Environ Sci Biotechnol. 2003;2(2):147–168. doi: 10.1023/B:RESB.0000040456.71537.29
  • LeChevallier MW, Babcock TM, Lee RG. Examination and characterization of distribution system biofilms. Appl Environ Microbiol. 1987;53(12):2714–2724.
  • Santo Domingo JW, Revetta RP, Iker B, Gomez-Alvvarez V, Garcia J, Sullivan J, Weast J. Molecular survey of concrete sewer biofilm microbial communities. Biofouling. 2011;27(9):993–1001. doi: 10.1080/08927014.2011.618637
  • Douterelo I, Sharpe RL, Boxall JB. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Res. 2013;47(2):503–516. doi: 10.1016/j.watres.2012.09.053
  • Shockling MA, Allen JJ, Smits AJ. Roughness effects in turbulent pipe flow. J Fluid Mech. 2006;564:267–285. doi: 10.1017/S0022112006001467
  • Colebrook CF, White CM. Experiments with fluid friction in roughened pipes. Proc Roy Soc London. Ser A, Math Phys Sci. 1937;161(906):367–381. doi: 10.1098/rspa.1937.0150
  • Nikuradse J. Laws of flow in rough pipes. Mech Eng Pap. 1933;1292(1):1–62.
  • Wallingford HR, Barr DIH. Tables for the hydraulic design of pipes, sewers and channels. London: Thomas Telford; 1998.
  • Lambert MF, Brookes JD, Kildea M, Grantham T, McFarrlane B. Understanding the impact of biofilm growth on pipe roughness. In World Environmental and Water Resources Congress 2008. Honolulu, HI: ASCE; 2008. p. 1–10.
  • Barton AF, Wallis MR, Sargison JE, Buia A, Walker GJ. Hydraulic roughness of biofouled pipes, biofilm character, and measured improvements from cleaning. J Hydraul Eng. 2008;134(6):852–857. doi: 10.1061/(ASCE)0733-9429(2008)134:6(852)
  • Andrewartha JM, Sargison JE, Perkins KJ. The influence of freshwater biofilms on drag in hydroelectric power schemes. WSEAS Trans Fluid Mech. 2008;3(3):201–206.
  • Schwartz T, Hoffmann S, Obst U. Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J Appl Microbiol. 2003;95(3):591–601. doi: 10.1046/j.1365-2672.2003.02019.x
  • Schwartz T, Hoffmann S, Obst U. Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems. Water Res. 1998;32(9):2787–2797. doi: 10.1016/S0043-1354(98)00026-8
  • Barton AF. Friction, roughness and boundary layer characteristics of freshwater biofilms in hydraulic conduits [PhD Thesis]. Hobart, Tasmania: School of Engineering, University of Tasmania; 2006.
  • Stoodley P, Lewandowki Z, Boyle JD, Lappin-Scott, HM. Oscillation characteristics of biofilm streamers in turbulent flowing water as related to drag and pressure drop. Biotechnol Bioeng. 1998;57(5):536–544. doi: 10.1002/(SICI)1097-0290(19980305)57:5<536::AID-BIT5>3.0.CO;2-H
  • Picologlou BF, Zelver N, Charcklis WG. Biofilm growth and hydraulic performance. J Hydraul Div. 1980;106(5):733–746.
  • Schultz MP. Turbulent boundary layers on surfaces covered with filamentous algae. Trans Am Soc Mech Eng J Fluids Eng. 2000;122(2):357–363. doi: 10.1115/1.483265
  • Characklis WG. Bioengineering report: fouling biofilm development: a process analysis. Biotechnol Bioeng. 1981;23(9):1923–1960. doi: 10.1002/bit.260230902
  • Characklis WG. Attached microbial growths – II. Frictional resistance due to microbial slimes. Water Res. 1973;7(9):1249–1258. doi: 10.1016/0043-1354(73)90002-X
  • Schultz MP, Swain GW. The effect of biofilms on turbulent boundary layers. J Fluids Eng. 1999;121(1):44–51. doi: 10.1115/1.2822009
  • Minkus AJ. Deterioration of the hydraulic capacity of pipelines. J N Engl Water Works Assoc. 1954;68(1):1–10.
  • Seifert L, Kruger W. Unusually high friction factor in a long, water supply line. VDI Z. 1950;92:189–191.
  • Sharp BB. Examination of the friction in the Morgan-Whyalla pipeline. Prepared for Engineering & Water Supply Department; Adelaide; 1954.
  • British Standards Institution. BS EN 752:2008. Drain and sewer systems outside buildings. London: BSI; 2008.
  • Water Research Centre (Great Britain). Sewers for adoption. 6th ed. Swindon: WRc plc; 2006.
  • Perkins S, Henderson AD, Walker JM, Li XL. The influence of bacteria based biofouling on the wall friction and velocity distribution of hydropower pipes. In 18th Australasian Fluid Mechanics Conference; Launceston, Tasmania; 2012.
  • Barton AF, Sylvester MW, Sargison JE, Walker GJ, Denne AB. Deterioration of conduit efficiency due to biofouling. In 8th National Conference on Hydraulics in Water Engineering; Queensland, Australia; 2004.
  • Lambert MF, Edeards RWJ, Howie SJ, De Gilio BB, Quinn SP. The impact of biofilm development on pipe roughness and velocity profile. In World Environmental and Water Resources Congress 2009. Kansas City, MO: ASCE; 2009.
  • Stoodley P, Doods I, Biyle JD, Lappin-Scott HM. Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol. 1998;85(S1):19S–28S. doi: 10.1111/j.1365-2672.1998.tb05279.x
  • Manning R. On the flow of water in open channels and pipes. Trans Inst. Civil Eng, Ireland. 1890;20:167–207.
  • Guzman K, La Motta EJ. McCorguodale JA, Rojas S, Ermogenous M. Effect of biofilm formation on roughness coefficient and solids deposition in small-diameter PVC sewer pipes. J Environ Eng. 2007;133(4):364–371. doi: 10.1061/(ASCE)0733-9372(2007)133:4(364)
  • Vignaga E. The effect of biofilm colonization on the stability of non-cohesive sediments [PhD Thesis]. Glasgow: University of Glasgow; 2012.
  • Chughtai F, Zayed T. Infrastructure condition prediction models for sustainable sewer pipelines. J Perform Constructed Facil. 2008;22(5):333–341. doi: 10.1061/(ASCE)0887-3828(2008)22:5(333)
  • Shirazi RHSM, Campisano C, Modica P, Willems J, Berlamont J. Modelling the erosive effects of sewer flushing using different sediment transport formulas. In 7th International Conference on Sewer Processes and Networks, SPN7; Sheffield, UK; 2013.
  • Creaco E, Bertrand-Krajewski J-L. Numerical simulation of flushing effect on sewer sediments and comparison of four sediment transport formulas. J Hydraul Res. 2009;47(2):195–202. doi: 10.3826/jhr.2009.3363
  • Nielsen AH, Yongsiri C, Hvitved-Jaconsen T, Vollemen J. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers. Water Res. 2008;42(15):4206–4214. doi: 10.1016/j.watres.2008.07.013
  • Guisasola A, de Hass D, Keller J, Yuan Z. Methane formation in sewer systems. Water Res. 2008;42(6):1421–1430. doi: 10.1016/j.watres.2007.10.014
  • Momba MNB, Kfir R, Venter SN, Cloete TE. An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. Water SA. 2000;26:59–66.
  • Prévost M, Rompre A, Coallir J, Servais P, Laurent P, Clement B, Lafrance P. Suspended bacterial biomass and activity in full-scale drinking water distribution systems: impact of water treatment. Water Res. 1998;32(5):1393–1406. doi: 10.1016/S0043-1354(97)00388-6
  • Husband PS, Boxall, JB, Saul, AJ. Laboratory studies investigating the processes leading to discolouration in water distribution networks. Water Res. 2008;42(16):4309–4318. doi: 10.1016/j.watres.2008.07.026
  • Eisnor J, Gagnon G. A framework for the implementation and design of pilot-scale distribution systems. J Water SRT-Aqua. 2003;52:501–519.
  • Schlichting H. Boundary layer theory. New York: McGraw-Hill; 1979.
  • Chamberlain AHL. The role of adsorbed layers in bacterial adhesion. Biofilms Science and technology. Dordrecht: Kluwer; 1992. p. 59–67.
  • Vigeant MAS, Ford RM, Wagner M, Tamm LK. Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy. Appl Environ Microbiol. 2002;68(6):2794–2801. doi: 10.1128/AEM.68.6.2794-2801.2002
  • Melo LF, Bott TR. Biofouling in water systems. Exp Thermal Fluid Sci. 1997;14(4):375–381. doi: 10.1016/S0894-1777(96)00139-2
  • Hallam NB, West JR, Forster CF, Simms J. The potential for biofilm growth in water distribution systems. Water Res. 2001;35(17):4063–4071. doi: 10.1016/S0043-1354(01)00248-2
  • Boe-Hansen R, Albrechtsen HJ, Arvin E, Jogensen C. Bulk water phase and biofilm growth in drinking water at low nutrient conditions. Water Res. 2002;36(18):4477–4486. doi: 10.1016/S0043-1354(02)00191-4
  • Kjelleberg S, Givskov M. The biofilm mode of life: mechanisms and adaptations. 2007.
  • Stewart PS. Mini-review: convection around biofilms. Biofouling. 2012;28(2):187–198. doi: 10.1080/08927014.2012.662641
  • Cloete TE, Jacobs L, Brözel VS. The chemical control of biofouling in industrial water systems. Biodegradation. 1998;9(1):23–37. doi: 10.1023/A:1008216209206
  • Tsvetanova Z. Study of biofilm formation on different pipe materials in a model of drinking water distribution system and its impact on microbiological water quality. Chemicals as intentional and accidental global environmental threats. Netherlands: Springer; 2006:463–468.
  • Zhou L, Zhang Y, Li G. Effect of pipe material and low level disinfectants on biofilm development in a simulated drinking water distribution system. J Zhejiang Univ-Sci A. 2009;10(5):725–731. doi: 10.1631/jzus.A0820486
  • Pedersen K. Biofilm development on stainless steel and PVC surfaces in drinking water. Water Res. 1990;24(2):239–243. doi: 10.1016/0043-1354(90)90109-J
  • Cloete TE, Westaard D, van Vuuren SJ. Dynamic response of biofilm to pipe surface and fluid velocity. Water Sci Technol. 2003;47(5):57–59.
  • Lauchlan C, Forty J, May R. Flow resistance of wastewater pumping mains. Water Manage. 2005;158(2):81–88.
  • Gjaltema A, Arts PAM, Van Loosdrecht MCM, Kuenen JG, Heijnen JJ. Heterogeneity of biofilms in rotating annular reactors: occurrence, structure, and consequences. Biotechnol Bioeng. 2004;44(2):194–204. doi: 10.1002/bit.260440208
  • Van Der Kooij D, Vrouwenvelder HS, Veenendaal HR. Density and composition of biofilms in drinking water distribution systems in the Netherlands. In AWWA Water Quality Technology Conference; New Orleans, LA; 1995. p. 1055–1062.
  • Niquette P, Servais P, Savoir R. Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Res. 2000;34(6):1952–1956. doi: 10.1016/S0043-1354(99)00307-3
  • Manuel CM, Nunes OC, Melo LF. Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res. 2007;41(3):551–562. doi: 10.1016/j.watres.2006.11.007
  • Perkins JA, Gardiner IM. The hydraulic roughness of slimed sewers. ICE Proceedings. 1985;79:87–104. doi: 10.1680/iicep.1985.1081
  • Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 2011;27(9):1017–1032. doi: 10.1080/08927014.2011.626899
  • Andrewartha JM, Sargison J. Turbulence and mean-velocity structure of flows over filamentous biofilms. In 34th IAHR World Congress; Brisbane, Australia; 2011. p. 2225–2232.
  • Lewandowski Z, Stoodley P. Flow induced vibrations, drag force, and pressure drop in conduits covered with biofilm. Water Sci Technol. 1995;2(8):19–26. doi: 10.1016/0273-1223(96)00003-0
  • De Beer D. Stoodley P, Roe F, Lewandsowski Z. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng. 1994;43(11):1131–1138. doi: 10.1002/bit.260431118
  • Santos R, Callow ME, Bott TR. The structure of Pseudomonas fluorescens biofilms in contact with flowing systems. Biofouling. 1991;4(4):319–336. doi: 10.1080/08927019109378222
  • Percival SL, Knapp JS, Wales DS, Edyvean RGJ. The effect of turbulent flow and surface roughness on biofilm formation in drinking water. J Ind Microbiol Biotechnol. 1999;22(3):152–159. doi: 10.1038/sj.jim.2900622
  • Dumbleton B. A question of scale and slime. Water Waste Treat. 1995;38(4):39–47.
  • Nowell ARM, Church M. Turbulent flow in a depth-limited boundary layer. J Geophys Res. 1979;84(C8):4816–4824. doi: 10.1029/JC084iC08p04816
  • Kerr CJ, Osborn KS, Robson GD, Handley PS. The relationship between pipe material and biofilm formation in a laboratory model system. J Appl Microbiol. 1999;85(1):29S–38S.
  • Momba MNB, Makala N. Comparing the effect of various pipe materials on biofilm formation in chlorinated and combined chlorine-chloraminated water systems. Water SA. 2004;30(2):175–182. doi: 10.4314/wsa.v30i2.5061
  • Kurth JC. Mitigating biofilm growth through the modification of concrete design and practice [MSc Thesis]. Georgia: Georgia Institute of Technology; 2008.
  • Verran J, Lees G, Shakespeare AP. The effect of surface roughness on the adhesion of Candida albicans to acrylic. Biofouling. 1991;3(3):183–191. doi: 10.1080/08927019109378173
  • Yu J, Kim D, Lee T. Microbial diversity in biofilms on water distribution pipes of different materials. Water Sci Technol. 2010;61(1):163–171. doi: 10.2166/wst.2010.813
  • Andrewartha JM. The effect of freshwater biofilms on turbulent boundary layers and the implications for hydropower canals [PhD Thesis]. Hobart, Tasmania: School of Engineering, University of Tasmania; 2010.
  • Sand W, Bock E. Biodeterioration of mineral materials by microorganisms – biogenic sulfuric and nitric acid corrosion of concrete and natural stone. Geomicrobiol J. 1991;9(2–3):129–138. doi: 10.1080/01490459109385994
  • Gaylarde CC, Morton LHG. Deteriogenic biofilms on buildings and their control: a review. Biofouling. 1999;14(1):59–74. doi: 10.1080/08927019909378397
  • Nielsen AH, Yongsiri C, Hvitved-Jacobsen T, Vollemen J. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks. Water Sci Technol. 2005;52(3):201–208.
  • Lehtola MJ, Miettinena IT, Minna M, Keinänena, Kekkia TK, Laineb O, Hirvonenc A, Vartiainenb T, Martikainenc PJ. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res. 2004;38(17):3769–3779. doi: 10.1016/j.watres.2004.06.024
  • Percival SL, Knapp JS, Edyvean R, Wales DS. Biofilm development on stainless steel in mains water. Water Res. 1998;32(1):243–253. doi: 10.1016/S0043-1354(97)00132-2
  • Abdel-Monim YK, Ead SA, Shabayek SA. Effect of time on pipe roughness. In 17th Canadian Hydrotechnical Conference; Edmonton, Alberta, Canada; 2005.
  • Bland CEG, Bayley RW, Thomas EV. Some observations on the accumulation of slime in drainage pipes the effect of these accumulations on resistance to flow. Public Health Eng. 1975;13:21–28.
  • Bott TR, Miller PC. Mechanisms of biofilm formation on aluminium tubes. J Chem Technol Biotechnol. 1983;33(3):177–184. doi: 10.1002/jctb.280330307
  • Flemming HC. Biofouling in water systems – cases, causes and countermeasures. Appl Microbiol Biotechnol 2002;59(6):629–640. doi: 10.1007/s00253-002-1066-9
  • Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Micro. 2010;8(9):623–633.
  • Kalmokoff ML, Austin JW, Wan XD, Sanders G, Benerjee S, Farber JM. Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions. J Appl Microbiol. 2001;91(4): 725–734. doi: 10.1046/j.1365-2672.2001.01419.x
  • Srinivasan R, Stewart PS, Griebe T, Chen CI, Xu X. Biofilm parameters influencing biocide efficacy. Biotechnol Bioeng. 1995;46(6):553–560. doi: 10.1002/bit.260460608
  • LeChevallier MW, Cawthon CD, Lee RG. Factors promoting survival of bacteria in chlorinated water supplies. Appl Environ Microbiol 1988;54(3):649–654.
  • Cochran WL, McFeters GA, Stewart PS. Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. J Appl Microbiol. 2000;88(1):22–30. doi: 10.1046/j.1365-2672.2000.00825.x
  • Simes LC, Azevedo N, Pacheco A, Keevil CW, Vieira MJ. Drinking water biofilm assessment of total and culturable bacteria under different operating conditions. Biofouling. 2006;22(2):91–99. doi: 10.1080/08927010600598603
  • Horan NJ, Eccles CR. Purification and characterization of extracellular polysaccharide from activated sludges. Water Res. 1986;20(11):1427–1432. doi: 10.1016/0043-1354(86)90142-9
  • Goodwin JAS, Forster CF. A further examination into the composition of activated sludge surfaces in relation to their settlement characteristics. Water Res. 1985;19(4):527–533. doi: 10.1016/0043-1354(85)90045-4
  • Qi X, Gao J, Sun D, Liang W, Wan Y, Li C, Xu X, Gao T. Biofilm formation of the pathogens of fatal bacterial granuloma after trauma: potential mechanism underlying the failure of traditional antibiotic treatments. Scand J Infect Dis. 2008;40(3):221–228. doi: 10.1080/00365540701632998
  • Prakash B, Veeregowda BM, Krishnappa G. Biofilms: a sur- vival strategy of bacteria. Curr Sci. 2003;85(9):1299–1307.
  • Donlan RM, JW Costerton. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–193. doi: 10.1128/CMR.15.2.167-193.2002
  • Kreft JU, Wimpenny JWT. Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci Technol. 2001;43(6):135–142.
  • Sutherland IW. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology. 2001;147(1):3–9.
  • Fang W, Hu JY, Ong SL. Influence of phosphorus on biofilm formation in model drinking water distribution systems. J Appl Microbiol. 2009;106(4):1328–1335. doi: 10.1111/j.1365-2672.2008.04099.x
  • Hoa PT, Nair L, Visvanathan C. The effect of nutrients on extracellular polymeric substance production and its influence on sludge properties. Water SA. 2004;29(4):437–442. doi: 10.4314/wsa.v29i4.5050
  • Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol. 2002;29(6):361–367. doi: 10.1038/sj.jim.7000282
  • Wloka M, Rehage H, Flemming HC, Wingender J. Rheological properties of viscoelastic biofilm extracellular polymeric substances and comparison to the behavior of calcium alginate gels. Colloid Polym Sci. 2004;282(10):1067–1076. doi: 10.1007/s00396-003-1033-8
  • Molobela IP, Ilunga FM. Impact of bacterial biofilms: the importance of quantitative biofilm studies. Ann Microbiol. 2012;62(2):461–467. doi: 10.1007/s13213-011-0344-0
  • Darcy H. Recherches expérimentales relatives au mouvement de l'eau dans les tuyaux. Vol. 1. Paris: Mallet-Bachelier; 1857.
  • Moody LF. Friction factors for pipe flow. Trans ASME. 1944;66(8):671–684.
  • Christensen BA, Locher FA, Swamee PK. Limitations and proper use of the Hazen–Williams equation. J Hydraul Eng. 2000;126(2):167–170. doi: 10.1061/(ASCE)0733-9429(2000)126:2(167)
  • Bennett D, Glaser R. Common pitfalls in hydraulic design of large diameter pipelines: case studies and good design practice. In ASCE Pipelines Conference 2011; Seattle, WA; 2011.
  • McKeon BJ, Jiang LIW, Morrison JF, Smits AJ. Further observations on the mean velocity distribution in fully developed pipe flow. J Fluid Mech. 2004;501:135–147. doi: 10.1017/S0022112003007304
  • Barton AF, Sargison JE, Osborn JE, Perkins K, Hallegraeff G. Characterizing the roughness of freshwater biofilms using a photogrammetric methodology. Biofouling. 2010;26(4):439–448. doi: 10.1080/08927011003699733
  • Rauen WB, Lin B, Falconer RA. Modelling dynamic bed roughness associated with bed form development. In 16th IAHR-APD Congress and 3rd IAHR-ISHS Symposium; Nanjing, China; 2008.
  • Rauen WB, Lin B, Falconer RA. Modelling ripple development under non-uniform flow and sediment supply-limited conditions in a laboratory flume. Estuarine Coastal Shelf Sci. 2009;82(3):452–460. doi: 10.1016/j.ecss.2009.02.015
  • Sharp WW, Walski TM. Predicting internal roughness in water mains. J Am Water Works Assoc. 1988;80:34–40.
  • Filion YR, MacLean HL, Karney BW. Life-cycle energy analysis of a water distribution system. J Infrastruct Syst. 2004;10(3):120–130. doi: 10.1061/(ASCE)1076-0342(2004)10:3(119)
  • Andrewartha JM, Sargison JE, Perkins KJ. The effect of gomphonema and filamentous algae streamers on hydroelectric canal capacity and turbulent boundary layer structure. In 16th Australasian Fluid Mechanics Conference (AFMC); Gold Coast: School of Engineering, The University of Queensland; 2007. p. 241–246.
  • Barton AF, Sargison JE, Brandner P, Walker GJ. A force balance to measure the total drag of biofilms on test plates. In 16th Australasian Fluid Mechanics Conference (AFMC); Gold Coast: School of Engineering, The University of Queensland Gold Coast; 2007. p. 819–824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.